organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­bromo-4-chloro­aniline

aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 21 May 2012; accepted 21 May 2012; online 26 May 2012)

The title compound, C6H4Br2ClN, is almost planar (r.m.s. deviation = 0.024 Å) and two intra­molecular N—H⋯Br hydrogen bonds generate S(5) rings. In the crystal, N—H⋯Br hydrogen bonds link the mol­ecules into chains propagating in [010].

Related literature

For related structures, see: Schlemper & Konnert (1967[Schlemper, E. O. & Konnert, J. (1967). Acta Cryst. 22, 918.]): Takazawa et al. (1989[Takazawa, H., Ohba, S. & Saito, Y. (1989). Acta Cryst. B45, 432-437.]). For the synthesis, see: Harrison et al. (1981[Harrison, J. J., Pellegrini, J. P. & Selwitz, C. M. (1981). J. Org. Chem., 46, 2169-2171.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4Br2ClN

  • Mr = 285.37

  • Monoclinic, P 21 /n

  • a = 13.3132 (7) Å

  • b = 3.9387 (2) Å

  • c = 16.5476 (9) Å

  • β = 112.318 (2)°

  • V = 802.70 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.35 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.170, Tmax = 0.292

  • 6640 measured reflections

  • 1900 independent reflections

  • 1429 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.02

  • 1900 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br2 0.86 2.64 3.067 (2) 112
N1—H1A⋯Br2i 0.86 2.91 3.380 (3) 117
N1—H1B⋯Br1 0.86 2.67 3.099 (3) 112
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as a pre-cursor. The crystal structures of 4-chloroaniline (Takazawa et al., 1989), 2,4, 6-tribromoaniline (Schlemper & Konnert, 1967) have been published which are related to (I).

The molecule as a whole is almost planar with r. m. s. deviation of 0.0242 Å. In (I), there exist intramolecular H-bonding of N—H···Br type to form two S(5) rings (Bernstein et al., 1995). The molecules are connected along the b-axis due to H-bondings of N—H···Br type (Table 1, Fig. 2). There does not exist any kind of π-interaction.

Related literature top

For related structures, see: Schlemper & Konnert (1967): Takazawa et al. (1989). For the synthesis, see: Harrison et al. (1981). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound has been synthesized from the 4-chloroaniline using the method of Harrison, et al., 1981.

m. p. 352–354 K.

Refinement top

The H-atoms were positioned geometrically at C—H = 0.93 and N—H = 0.86 Å, respectively and included in the refinement as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009), which shows that molecules form C(2) chains extending along [0 1 0] direction.
2,6-Dibromo-4-chloroaniline top
Crystal data top
C6H4Br2ClNF(000) = 536
Mr = 285.37Dx = 2.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1429 reflections
a = 13.3132 (7) Åθ = 2.5–27.9°
b = 3.9387 (2) ŵ = 10.35 mm1
c = 16.5476 (9) ÅT = 296 K
β = 112.318 (2)°Needle, dark brown
V = 802.70 (7) Å30.35 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1900 independent reflections
Radiation source: fine-focus sealed tube1429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.60 pixels mm-1θmax = 27.9°, θmin = 2.5°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 35
Tmin = 0.170, Tmax = 0.292l = 2121
6640 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0225P)2 + 0.3103P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1900 reflectionsΔρmax = 0.43 e Å3
92 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (5)
Crystal data top
C6H4Br2ClNV = 802.70 (7) Å3
Mr = 285.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3132 (7) ŵ = 10.35 mm1
b = 3.9387 (2) ÅT = 296 K
c = 16.5476 (9) Å0.35 × 0.15 × 0.12 mm
β = 112.318 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1900 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1429 reflections with I > 2σ(I)
Tmin = 0.170, Tmax = 0.292Rint = 0.028
6640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
1900 reflectionsΔρmin = 0.36 e Å3
92 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43969 (2)0.63712 (8)0.36884 (2)0.0452 (1)
Br20.63382 (2)0.13268 (8)0.14100 (2)0.0465 (1)
Cl10.21601 (6)0.6350 (2)0.01323 (5)0.0528 (3)
N10.61671 (18)0.3035 (7)0.31614 (15)0.0447 (8)
C10.5233 (2)0.3766 (6)0.24594 (17)0.0310 (8)
C20.4327 (2)0.5295 (7)0.25508 (16)0.0312 (8)
C30.3397 (2)0.6082 (7)0.18522 (17)0.0333 (8)
C40.3335 (2)0.5335 (7)0.10201 (18)0.0351 (8)
C50.4205 (2)0.3896 (7)0.08856 (17)0.0355 (8)
C60.5129 (2)0.3157 (6)0.15999 (17)0.0301 (8)
H1A0.671450.217190.307980.0537*
H1B0.620550.344040.368300.0537*
H30.281530.710530.193810.0399*
H50.416660.343580.032330.0426*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0471 (2)0.0548 (2)0.0351 (2)0.0064 (1)0.0173 (1)0.0081 (1)
Br20.0434 (2)0.0423 (2)0.0610 (2)0.0059 (1)0.0281 (2)0.0024 (2)
Cl10.0439 (4)0.0637 (6)0.0373 (4)0.0116 (4)0.0002 (3)0.0030 (4)
N10.0297 (12)0.0628 (18)0.0369 (13)0.0035 (12)0.0072 (10)0.0046 (12)
C10.0284 (13)0.0255 (14)0.0371 (13)0.0050 (12)0.0103 (11)0.0035 (12)
C20.0352 (14)0.0284 (15)0.0312 (13)0.0071 (12)0.0141 (12)0.0026 (11)
C30.0294 (13)0.0317 (16)0.0384 (14)0.0017 (12)0.0125 (12)0.0000 (12)
C40.0332 (14)0.0315 (16)0.0333 (14)0.0024 (12)0.0043 (12)0.0020 (12)
C50.0412 (15)0.0334 (16)0.0320 (13)0.0017 (13)0.0141 (12)0.0033 (12)
C60.0299 (13)0.0229 (15)0.0391 (14)0.0004 (11)0.0150 (11)0.0009 (12)
Geometric parameters (Å, º) top
Br1—C21.897 (3)C1—C21.407 (4)
Br2—C61.896 (3)C2—C31.371 (4)
Cl1—C41.738 (3)C3—C41.380 (4)
N1—C11.372 (4)C4—C51.381 (4)
N1—H1B0.8600C5—C61.375 (4)
N1—H1A0.8600C3—H30.9300
C1—C61.396 (4)C5—H50.9300
C1—N1—H1B120.00Cl1—C4—C3119.2 (2)
H1A—N1—H1B120.00Cl1—C4—C5119.9 (2)
C1—N1—H1A120.00C4—C5—C6118.7 (2)
C2—C1—C6115.2 (2)Br2—C6—C1118.2 (2)
N1—C1—C6122.3 (3)Br2—C6—C5118.5 (2)
N1—C1—C2122.5 (2)C1—C6—C5123.3 (3)
Br1—C2—C1118.78 (19)C2—C3—H3120.00
Br1—C2—C3118.3 (2)C4—C3—H3120.00
C1—C2—C3122.9 (2)C4—C5—H5121.00
C2—C3—C4119.1 (3)C6—C5—H5121.00
C3—C4—C5120.8 (3)
N1—C1—C2—Br10.3 (4)Br1—C2—C3—C4179.6 (2)
N1—C1—C2—C3179.0 (3)C1—C2—C3—C40.4 (4)
C6—C1—C2—Br1178.01 (19)C2—C3—C4—Cl1179.7 (2)
C6—C1—C2—C31.2 (4)C2—C3—C4—C51.7 (4)
N1—C1—C6—Br21.1 (3)Cl1—C4—C5—C6179.2 (2)
N1—C1—C6—C5179.4 (3)C3—C4—C5—C61.3 (4)
C2—C1—C6—Br2176.68 (19)C4—C5—C6—Br2177.9 (2)
C2—C1—C6—C51.6 (4)C4—C5—C6—C10.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br20.862.643.067 (2)112
N1—H1A···Br2i0.862.913.380 (3)117
N1—H1B···Br10.862.673.099 (3)112
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H4Br2ClN
Mr285.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.3132 (7), 3.9387 (2), 16.5476 (9)
β (°) 112.318 (2)
V3)802.70 (7)
Z4
Radiation typeMo Kα
µ (mm1)10.35
Crystal size (mm)0.35 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.170, 0.292
No. of measured, independent and
observed [I > 2σ(I)] reflections
6640, 1900, 1429
Rint0.028
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.02
No. of reflections1900
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br20.862.643.067 (2)112
N1—H1A···Br2i0.862.913.380 (3)117
N1—H1B···Br10.862.673.099 (3)112
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, J. J., Pellegrini, J. P. & Selwitz, C. M. (1981). J. Org. Chem., 46, 2169–2171.  CrossRef CAS Web of Science Google Scholar
First citationSchlemper, E. O. & Konnert, J. (1967). Acta Cryst. 22, 918.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakazawa, H., Ohba, S. & Saito, Y. (1989). Acta Cryst. B45, 432–437.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds