organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(E,E)-cis-(Cyclo­hexane-1,4-di­yl)bis­­(nitrilo­methanylyl­­idene)]diphenol

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 21 May 2012; accepted 22 May 2012; online 26 May 2012)

In the title compound, C20H22N2O2, the asymmetric unit contains two independent half-mol­ecules, which are both completed by crystallographic inversion symmetry. The cyclo­hexane rings of both mol­ecules adopt chair conformations; the N atoms are in equatorial orientations in one mol­ecule and in axial orientations in the other. Both mol­ecules feature two intra­molecular O—H⋯N hydrogen bonds, which generate S(6) rings.

Related literature

For background to Schiff bases as ligands, see: Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O2

  • Mr = 322.40

  • Monoclinic, P 21 /n

  • a = 16.2979 (11) Å

  • b = 6.1103 (4) Å

  • c = 18.2336 (12) Å

  • β = 104.975 (4)°

  • V = 1754.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.980

  • 12904 measured reflections

  • 3428 independent reflections

  • 1641 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 1.01

  • 3428 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.579 (2) 148
O2—H2A⋯N2 0.82 1.86 2.593 (3) 148

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Schiff base compounds have been reported as excelent substrates in the development of coordination chemistry (e.g. Li & Zhang, 2004), In this study we report the synthesis and crystal structure of the title compound (I).

As shown in Fig. 1, there are two independent half molecules A (with C1) and B (with C11) in the asymmetric unit of the title compound. They are centrosymmetric and the centres of symmetry are lied on the centroids of their cyclohexane rings. The cyclohexane rings of them adopt chair conformations Molecular conformation of the title compound is stabilized by intramolecular O—H···N hydrogen bonds, generating an S(6) ring motif (Table 1, Fig. 2).

Related literature top

For background to Schiff bases as ligands, see: Li & Zhang (2004).

Experimental top

The title compound arose as a bi-product from heating a reaction mixture of 114 mg (1 mmol) cyclohexane-1,4-diamine, 112 mg (1 mmol) cyclohexane-1,3-dione and 122 mg (1 mmol) salicylaldehyde in 50 ml e thanol under reflux for 6 h. The reaction mixture was concentrated under vacuum then left to cool at ambient temperature. The obtained solid was collected by Buckner funnel, washed with water then ethanol, dried in desiccator and crystallized from ethanol (m.p. 451 K). Yellow prisms were grown from ethanol solution by slow evaporation over two days.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.82 Å and C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine), with Uiso(H) = 1.5Ueq(O) for OH groups and Uiso(H) = 1.2Ueq(C) for others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewing along the b axis.
2,2'-[(E,E)-cis-(Cyclohexane-1,4- diyl)bis(nitrilomethanylylidene)]diphenol top
Crystal data top
C20H22N2O2F(000) = 688
Mr = 322.40Dx = 1.221 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 355 reflections
a = 16.2979 (11) Åθ = 3.5–18°
b = 6.1103 (4) ŵ = 0.08 mm1
c = 18.2336 (12) ÅT = 296 K
β = 104.975 (4)°Prism, light yellow
V = 1754.1 (2) Å30.32 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3428 independent reflections
Radiation source: fine-focus sealed tube1641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 0.81 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 2017
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 77
Tmin = 0.975, Tmax = 0.980l = 2222
12904 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1881P]
where P = (Fo2 + 2Fc2)/3
3428 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C20H22N2O2V = 1754.1 (2) Å3
Mr = 322.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.2979 (11) ŵ = 0.08 mm1
b = 6.1103 (4) ÅT = 296 K
c = 18.2336 (12) Å0.32 × 0.28 × 0.25 mm
β = 104.975 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3428 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1641 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.980Rint = 0.041
12904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
3428 reflectionsΔρmin = 0.13 e Å3
219 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09064 (11)0.2099 (2)0.21955 (9)0.0798 (7)
N10.07675 (13)0.0983 (3)0.12044 (10)0.0689 (8)
C10.13461 (14)0.0662 (4)0.27110 (13)0.0590 (9)
C20.16439 (15)0.1325 (4)0.34525 (13)0.0737 (10)
C30.20939 (17)0.0070 (6)0.39911 (15)0.0845 (11)
C40.22627 (17)0.2171 (6)0.37967 (16)0.0878 (14)
C50.19641 (15)0.2847 (4)0.30586 (15)0.0732 (10)
C60.15061 (13)0.1469 (4)0.25003 (12)0.0540 (8)
C70.11732 (14)0.2225 (4)0.17308 (13)0.0629 (9)
C80.0412 (2)0.1898 (4)0.04433 (14)0.0798 (12)
C90.07984 (17)0.0747 (5)0.01193 (15)0.0893 (13)
C100.05416 (19)0.1620 (5)0.02264 (14)0.0895 (13)
O20.24999 (12)0.0079 (3)0.60105 (10)0.0906 (8)
N20.15493 (13)0.3363 (3)0.59279 (11)0.0689 (8)
C110.30811 (17)0.0985 (4)0.65534 (13)0.0658 (10)
C120.3858 (2)0.0030 (4)0.68695 (16)0.0789 (11)
C130.44577 (18)0.1016 (5)0.74179 (17)0.0835 (12)
C140.43165 (18)0.3068 (5)0.76653 (15)0.0827 (12)
C150.35547 (17)0.4075 (4)0.73567 (14)0.0726 (10)
C160.29237 (15)0.3078 (4)0.67939 (13)0.0594 (9)
C170.21310 (16)0.4199 (4)0.64521 (13)0.0639 (9)
C180.07848 (17)0.4641 (4)0.56020 (12)0.0707 (10)
C190.08057 (16)0.5442 (5)0.48189 (14)0.0877 (11)
C200.00025 (17)0.3308 (5)0.55562 (15)0.0893 (11)
H10.074700.149500.178100.0960*
H20.153700.274400.358800.0880*
H30.228800.039800.449200.1020*
H40.257600.312000.416200.1050*
H50.207300.427200.293000.0880*
H70.125900.367700.161700.0760*
H80.054800.346100.044900.0960*
H9A0.062500.149100.060500.1070*
H9B0.141200.083800.005500.1070*
H10A0.077100.224800.062000.1070*
H10B0.078200.241100.024100.1070*
H2A0.207300.067900.587200.1090*
H120.396700.141700.670700.0950*
H130.497300.032500.762900.1000*
H140.473300.376600.803800.0990*
H150.345700.546000.752800.0870*
H170.204700.559100.662600.0770*
H180.077700.591300.592800.0850*
H19A0.086500.420100.450500.1050*
H19B0.129400.638900.486200.1050*
H20A0.001500.288000.606400.1070*
H20B0.002800.198500.526900.1070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1064 (14)0.0639 (10)0.0648 (11)0.0200 (10)0.0146 (10)0.0018 (8)
N10.0927 (15)0.0592 (12)0.0533 (12)0.0029 (11)0.0160 (10)0.0030 (10)
C10.0618 (15)0.0655 (16)0.0526 (14)0.0007 (13)0.0202 (11)0.0056 (12)
C20.0842 (19)0.0826 (18)0.0583 (16)0.0068 (15)0.0257 (13)0.0046 (14)
C30.084 (2)0.114 (2)0.0565 (17)0.0167 (18)0.0201 (14)0.0041 (17)
C40.0716 (19)0.114 (3)0.073 (2)0.0034 (17)0.0099 (15)0.0310 (18)
C50.0669 (17)0.0738 (17)0.0834 (19)0.0097 (13)0.0274 (14)0.0203 (15)
C60.0537 (14)0.0567 (14)0.0558 (14)0.0014 (11)0.0217 (11)0.0057 (12)
C70.0736 (17)0.0543 (14)0.0672 (16)0.0008 (12)0.0296 (13)0.0013 (13)
C80.120 (3)0.0562 (15)0.0589 (16)0.0001 (16)0.0152 (16)0.0100 (13)
C90.083 (2)0.120 (3)0.0661 (18)0.0034 (18)0.0212 (14)0.0239 (17)
C100.107 (3)0.100 (2)0.0625 (17)0.0366 (19)0.0238 (16)0.0014 (15)
O20.1192 (16)0.0754 (12)0.0774 (13)0.0202 (11)0.0259 (11)0.0102 (10)
N20.0781 (15)0.0755 (14)0.0541 (12)0.0147 (12)0.0189 (10)0.0012 (11)
C110.085 (2)0.0656 (17)0.0548 (15)0.0085 (15)0.0327 (14)0.0045 (13)
C120.101 (2)0.0716 (18)0.0787 (19)0.0263 (18)0.0497 (17)0.0179 (15)
C130.073 (2)0.104 (2)0.084 (2)0.0205 (18)0.0391 (17)0.0301 (18)
C140.067 (2)0.097 (2)0.088 (2)0.0028 (17)0.0271 (15)0.0135 (17)
C150.0768 (19)0.0668 (16)0.0809 (18)0.0025 (15)0.0324 (15)0.0048 (14)
C160.0693 (17)0.0588 (15)0.0594 (15)0.0058 (13)0.0335 (13)0.0077 (12)
C170.0772 (18)0.0605 (15)0.0622 (16)0.0092 (14)0.0328 (13)0.0061 (13)
C180.0829 (19)0.0775 (17)0.0530 (15)0.0188 (16)0.0202 (12)0.0007 (13)
C190.0816 (19)0.109 (2)0.0774 (19)0.0142 (17)0.0296 (14)0.0299 (16)
C200.089 (2)0.104 (2)0.0797 (19)0.0131 (19)0.0304 (15)0.0309 (16)
Geometric parameters (Å, º) top
O1—C11.349 (3)C9—H9A0.9700
O1—H10.8200C9—H9B0.9700
O2—C111.347 (3)C10—H10B0.9700
O2—H2A0.8200C10—H10A0.9700
N1—C71.267 (3)C11—C161.397 (3)
N1—C81.469 (3)C11—C121.394 (4)
N2—C181.460 (3)C12—C131.363 (4)
N2—C171.267 (3)C13—C141.372 (4)
C1—C61.401 (3)C14—C151.370 (4)
C1—C21.374 (3)C15—C161.392 (4)
C2—C31.363 (4)C16—C171.453 (4)
C3—C41.378 (5)C18—C201.497 (4)
C4—C51.371 (4)C18—C191.518 (3)
C5—C61.382 (3)C19—C20ii1.523 (4)
C6—C71.443 (3)C12—H120.9300
C8—C101.511 (5)C13—H130.9300
C8—C91.509 (4)C14—H140.9300
C9—C10i1.504 (4)C15—H150.9300
C2—H20.9300C17—H170.9300
C3—H30.9300C18—H180.9800
C4—H40.9300C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C7—H70.9300C20—H20A0.9700
C8—H80.9800C20—H20B0.9700
C1—O1—H1109.00H10A—C10—H10B108.00
C11—O2—H2A109.00C8—C10—H10A109.00
C7—N1—C8119.3 (2)O2—C11—C12118.7 (2)
C17—N2—C18119.0 (2)C12—C11—C16119.9 (2)
O1—C1—C2118.9 (2)O2—C11—C16121.4 (2)
C2—C1—C6120.0 (2)C11—C12—C13119.8 (2)
O1—C1—C6121.1 (2)C12—C13—C14121.4 (3)
C1—C2—C3120.8 (2)C13—C14—C15119.1 (3)
C2—C3—C4120.2 (3)C14—C15—C16121.7 (2)
C3—C4—C5119.3 (3)C11—C16—C15118.1 (2)
C4—C5—C6121.8 (3)C11—C16—C17120.8 (2)
C1—C6—C5117.9 (2)C15—C16—C17121.1 (2)
C1—C6—C7120.9 (2)N2—C17—C16122.9 (2)
C5—C6—C7121.1 (2)N2—C18—C19109.3 (2)
N1—C7—C6122.4 (2)N2—C18—C20110.9 (2)
N1—C8—C10109.4 (2)C19—C18—C20110.4 (2)
C9—C8—C10110.6 (2)C18—C19—C20ii110.9 (2)
N1—C8—C9109.4 (2)C18—C20—C19ii112.2 (2)
C8—C9—C10i112.7 (2)C11—C12—H12120.00
C8—C10—C9i112.0 (2)C13—C12—H12120.00
C1—C2—H2120.00C12—C13—H13119.00
C3—C2—H2120.00C14—C13—H13119.00
C4—C3—H3120.00C13—C14—H14120.00
C2—C3—H3120.00C15—C14—H14120.00
C3—C4—H4120.00C14—C15—H15119.00
C5—C4—H4120.00C16—C15—H15119.00
C6—C5—H5119.00N2—C17—H17119.00
C4—C5—H5119.00C16—C17—H17119.00
C6—C7—H7119.00N2—C18—H18109.00
N1—C7—H7119.00C19—C18—H18109.00
C9—C8—H8109.00C20—C18—H18109.00
C10—C8—H8109.00C18—C19—H19A109.00
N1—C8—H8109.00C18—C19—H19B109.00
C8—C9—H9B109.00H19A—C19—H19B108.00
C8—C9—H9A109.00C20ii—C19—H19A109.00
C10i—C9—H9B109.00C20ii—C19—H19B109.00
H9A—C9—H9B108.00C18—C20—H20A109.00
C10i—C9—H9A109.00C18—C20—H20B109.00
C8—C10—H10B109.00H20A—C20—H20B108.00
C9i—C10—H10A109.00C19ii—C20—H20A109.00
C9i—C10—H10B109.00C19ii—C20—H20B109.00
C8—N1—C7—C6177.0 (2)N1—C8—C10—C9i67.2 (3)
C7—N1—C8—C9119.4 (3)C9—C8—C10—C9i53.4 (3)
C7—N1—C8—C10119.3 (3)C8—C9—C10i—C8i54.6 (3)
C18—N2—C17—C16178.1 (2)O2—C11—C12—C13179.8 (3)
C17—N2—C18—C19105.8 (3)C16—C11—C12—C130.7 (4)
C17—N2—C18—C20132.2 (2)O2—C11—C16—C15179.9 (2)
O1—C1—C2—C3179.7 (2)O2—C11—C16—C171.4 (4)
C6—C1—C2—C30.2 (4)C12—C11—C16—C150.9 (4)
O1—C1—C6—C5179.7 (2)C12—C11—C16—C17177.7 (2)
C2—C1—C6—C7177.7 (2)C11—C12—C13—C140.4 (5)
O1—C1—C6—C72.8 (3)C12—C13—C14—C150.4 (4)
C2—C1—C6—C50.2 (3)C13—C14—C15—C160.6 (4)
C1—C2—C3—C40.5 (4)C14—C15—C16—C110.8 (4)
C2—C3—C4—C50.8 (4)C14—C15—C16—C17177.7 (2)
C3—C4—C5—C60.8 (4)C11—C16—C17—N20.0 (4)
C4—C5—C6—C10.5 (4)C15—C16—C17—N2178.5 (2)
C4—C5—C6—C7178.0 (2)N2—C18—C19—C20ii177.3 (2)
C1—C6—C7—N14.2 (4)C20—C18—C19—C20ii55.0 (3)
C5—C6—C7—N1178.4 (2)N2—C18—C20—C19ii177.1 (2)
C10—C8—C9—C10i53.8 (3)C19—C18—C20—C19ii55.7 (3)
N1—C8—C9—C10i66.8 (3)C18—C19—C20ii—C18ii56.0 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.579 (2)148
O2—H2A···N20.821.862.593 (3)148

Experimental details

Crystal data
Chemical formulaC20H22N2O2
Mr322.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)16.2979 (11), 6.1103 (4), 18.2336 (12)
β (°) 104.975 (4)
V3)1754.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
12904, 3428, 1641
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.01
No. of reflections3428
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.579 (2)148
O2—H2A···N20.821.862.593 (3)148
 

Acknowledgements

This project was sponsored by the General Association of Scholarships in Egypt. The University of Sargodha is gratefully acknowledged for The X-ray difraction measurements and the data collection.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds