organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro­benzyl­­idene)-4-methyl­benzohydrazide

aCapital Medical University, Beijing 100069, People's Republic of China, bCentral Laboratory, Luhe Teaching Hospital of the Capital Medical University, Beijing 101100, People's Republic of China, and cBeijing Chao-Yang Hospital, Beijing 100020, People's Republic of China
*Correspondence e-mail: haiyong136@163.com, wangjiangning135@163.com

(Received 22 May 2012; accepted 26 May 2012; online 31 May 2012)

In the title compound, C15H13ClN2O, the mol­ecule displays a trans conformation with respect to the C=N bond. The two aromatic rings form a dihedral angle of 12.0 (3)°. In the crystal, mol­ecules are connected via N—H⋯O hydrogen bonds into chains propagating along the c-axis direction.

Related literature

For the crystal structures of hydrazones, see: Wardell et al. (2006[Wardell, S. M. S. V., de Lima Ferreira, M., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o118-o121.]); Kummerle et al. (2009[Kummerle, A. E., Raimundo, J. M., Leal, C. M., da Silva, G. S., Balliano, T. L., Pereira, M. A., de Simone, C. A., Sudo, R. T., Zapata-Sudo, G., Fraga, C. A. M. & Barreiro, E. J. (2009). Eur. J. Med. Chem. 44, 4004-4009.]). For bond-length data, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O

  • Mr = 272.72

  • Monoclinic, P 21 /c

  • a = 11.0697 (14) Å

  • b = 13.4436 (16) Å

  • c = 9.1643 (11) Å

  • β = 96.576 (2)°

  • V = 1354.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.973, Tmax = 0.981

  • 11486 measured reflections

  • 2096 independent reflections

  • 1682 reflections with I > 2σ(I)

  • Rint = 0.026

  • θmax = 23.9°

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.03

  • 2096 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (1) 2.05 (1) 2.8976 (19) 159 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a number of hydrazones have been prepared and structurally characterized (Wardell et al., 2006; Kummerle et al., 2009). As an extension of work on the structural characterization of hydrazones, the title compound, Fig. 1, is reported here.

The molecule of the compound displays a trans conformation with respect to the C=N bond. The two aromatic rings form a dihedral angle of 12.0 (3)°. The bond lengths are within normal ranges (Allen et al., 1987). In the crystal, molecules are connected via intermolecular N—H···O hydrogen bonding (Table 1) into chains along the c axis (Fig. 2).

Related literature top

For the crystal structures of hydrazones, see: Wardell et al. (2006); Kummerle et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Chlorobenzaldehyde (0.1 mmol, 14.0 mg) and 4-methylbenzhydrazide (0.1 mmol, 15.0 mg) were stirred in 20 ml methanol at room temperature for 30 min. A large number of colorless blocks were formed by slow evaporation of the methanolic solution containing the compound in air.

Refinement top

The amino H atom was located from a difference Fourier map and refined isotropically, with N–H distance restrained to 0.90 (1) Å. The remaining hydrogen atoms were positioned geometrically and treated as riding on their parent atoms, with C–H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(Caromatic) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Dashed lines show intermolecular hydrogen bonds.
N'-(2-Chlorobenzylidene)-4-methylbenzohydrazide top
Crystal data top
C15H13ClN2OF(000) = 568
Mr = 272.72Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5323 reflections
a = 11.0697 (14) Åθ = 2.4–24.3°
b = 13.4436 (16) ŵ = 0.28 mm1
c = 9.1643 (11) ÅT = 298 K
β = 96.576 (2)°Block, colorless
V = 1354.8 (3) Å30.10 × 0.10 × 0.07 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2096 independent reflections
Radiation source: fine-focus sealed tube1682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 23.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.973, Tmax = 0.981k = 1515
11486 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.051P)2 + 0.4392P]
where P = (Fo2 + 2Fc2)/3
2096 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C15H13ClN2OV = 1354.8 (3) Å3
Mr = 272.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0697 (14) ŵ = 0.28 mm1
b = 13.4436 (16) ÅT = 298 K
c = 9.1643 (11) Å0.10 × 0.10 × 0.07 mm
β = 96.576 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1682 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.981Rint = 0.026
11486 measured reflectionsθmax = 23.9°
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
2096 reflectionsΔρmin = 0.18 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.73671 (7)0.12300 (4)0.12887 (7)0.0804 (3)
N10.68758 (14)0.16431 (11)0.06660 (16)0.0437 (4)
N20.73084 (15)0.24311 (11)0.02057 (16)0.0440 (4)
O10.76428 (13)0.33102 (10)0.18063 (13)0.0560 (4)
C10.62975 (16)0.00454 (13)0.0883 (2)0.0444 (5)
C20.65016 (18)0.10128 (14)0.0383 (2)0.0508 (5)
C30.6060 (2)0.18270 (15)0.1196 (2)0.0611 (6)
H30.62090.24670.08350.073*
C40.5403 (2)0.16849 (17)0.2538 (3)0.0673 (6)
H40.50980.22290.30880.081*
C50.5195 (2)0.07398 (17)0.3069 (2)0.0655 (6)
H50.47520.06450.39840.079*
C60.56356 (18)0.00679 (16)0.2258 (2)0.0548 (5)
H60.54890.07040.26360.066*
C70.67597 (17)0.08183 (13)0.0024 (2)0.0453 (5)
H70.69670.07640.09860.054*
C80.76952 (17)0.32495 (13)0.04646 (19)0.0415 (4)
C90.81732 (17)0.40832 (12)0.04982 (19)0.0404 (4)
C100.86287 (18)0.39728 (13)0.1951 (2)0.0455 (5)
H100.86410.33470.23850.055*
C110.90664 (18)0.47857 (15)0.2764 (2)0.0534 (5)
H110.93810.46940.37400.064*
C120.90528 (18)0.57268 (14)0.2177 (2)0.0527 (5)
C130.8605 (2)0.58265 (16)0.0728 (3)0.0707 (7)
H130.85850.64540.02990.085*
C140.8183 (2)0.50216 (15)0.0111 (2)0.0661 (6)
H140.79030.51110.10980.079*
C150.9510 (2)0.66110 (18)0.3086 (3)0.0776 (7)
H15A0.90730.66620.39300.116*
H15B0.93870.72050.25070.116*
H15C1.03620.65300.34020.116*
H20.740 (2)0.2368 (18)0.1184 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1227 (6)0.0485 (4)0.0643 (4)0.0043 (3)0.0136 (4)0.0008 (3)
N10.0568 (10)0.0352 (8)0.0386 (9)0.0009 (7)0.0025 (7)0.0062 (7)
N20.0665 (10)0.0329 (8)0.0319 (8)0.0025 (7)0.0022 (8)0.0019 (7)
O10.0919 (11)0.0446 (8)0.0314 (7)0.0007 (7)0.0065 (7)0.0009 (6)
C10.0503 (11)0.0411 (10)0.0433 (11)0.0045 (8)0.0118 (9)0.0052 (8)
C20.0595 (12)0.0430 (11)0.0510 (12)0.0032 (9)0.0104 (10)0.0071 (9)
C30.0737 (14)0.0397 (11)0.0710 (15)0.0060 (10)0.0132 (12)0.0104 (10)
C40.0755 (15)0.0543 (14)0.0714 (16)0.0171 (11)0.0052 (13)0.0230 (12)
C50.0703 (15)0.0673 (15)0.0565 (13)0.0130 (11)0.0027 (11)0.0109 (11)
C60.0607 (12)0.0499 (12)0.0528 (12)0.0068 (10)0.0028 (10)0.0039 (10)
C70.0591 (12)0.0387 (10)0.0380 (10)0.0013 (9)0.0054 (9)0.0036 (8)
C80.0542 (11)0.0357 (10)0.0343 (10)0.0069 (8)0.0044 (8)0.0016 (8)
C90.0508 (11)0.0338 (9)0.0373 (10)0.0016 (8)0.0074 (8)0.0007 (7)
C100.0599 (12)0.0358 (10)0.0404 (11)0.0023 (8)0.0033 (9)0.0043 (8)
C110.0643 (13)0.0512 (12)0.0427 (11)0.0079 (10)0.0019 (9)0.0029 (9)
C120.0534 (12)0.0444 (12)0.0610 (13)0.0091 (9)0.0099 (10)0.0072 (10)
C130.1038 (19)0.0339 (11)0.0721 (16)0.0111 (11)0.0008 (14)0.0086 (10)
C140.1066 (18)0.0429 (12)0.0456 (12)0.0066 (12)0.0057 (12)0.0091 (10)
C150.0850 (17)0.0563 (14)0.0914 (19)0.0249 (12)0.0092 (14)0.0196 (13)
Geometric parameters (Å, º) top
Cl1—C21.736 (2)C7—H70.9300
N1—C71.269 (2)C8—C91.486 (2)
N1—N21.379 (2)C9—C101.376 (3)
N2—C81.353 (2)C9—C141.380 (3)
N2—H20.895 (9)C10—C111.379 (3)
O1—C81.227 (2)C10—H100.9300
C1—C21.389 (3)C11—C121.374 (3)
C1—C61.391 (3)C11—H110.9300
C1—C71.462 (2)C12—C131.370 (3)
C2—C31.382 (3)C12—C151.505 (3)
C3—C41.368 (3)C13—C141.377 (3)
C3—H30.9300C13—H130.9300
C4—C51.371 (3)C14—H140.9300
C4—H40.9300C15—H15A0.9600
C5—C61.374 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300
C7—N1—N2116.71 (15)O1—C8—C9121.18 (16)
C8—N2—N1117.93 (14)N2—C8—C9116.96 (15)
C8—N2—H2121.8 (16)C10—C9—C14118.10 (17)
N1—N2—H2119.9 (16)C10—C9—C8123.99 (15)
C2—C1—C6116.78 (17)C14—C9—C8117.90 (16)
C2—C1—C7122.13 (17)C9—C10—C11120.29 (17)
C6—C1—C7121.09 (17)C9—C10—H10119.9
C3—C2—C1121.96 (19)C11—C10—H10119.9
C3—C2—Cl1117.91 (16)C12—C11—C10122.04 (18)
C1—C2—Cl1120.10 (14)C12—C11—H11119.0
C4—C3—C2119.5 (2)C10—C11—H11119.0
C4—C3—H3120.2C13—C12—C11117.12 (18)
C2—C3—H3120.2C13—C12—C15121.4 (2)
C3—C4—C5119.95 (19)C11—C12—C15121.5 (2)
C3—C4—H4120.0C12—C13—C14121.75 (19)
C5—C4—H4120.0C12—C13—H13119.1
C4—C5—C6120.4 (2)C14—C13—H13119.1
C4—C5—H5119.8C13—C14—C9120.66 (19)
C6—C5—H5119.8C13—C14—H14119.7
C5—C6—C1121.4 (2)C9—C14—H14119.7
C5—C6—H6119.3C12—C15—H15A109.5
C1—C6—H6119.3C12—C15—H15B109.5
N1—C7—C1119.45 (16)H15A—C15—H15B109.5
N1—C7—H7120.3C12—C15—H15C109.5
C1—C7—H7120.3H15A—C15—H15C109.5
O1—C8—N2121.86 (16)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.05 (1)2.8976 (19)159 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O
Mr272.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.0697 (14), 13.4436 (16), 9.1643 (11)
β (°) 96.576 (2)
V3)1354.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.10 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
11486, 2096, 1682
Rint0.026
θmax (°)23.9
(sin θ/λ)max1)0.569
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.03
No. of reflections2096
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.895 (9)2.045 (13)2.8976 (19)159 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by National Natural Science Foundation of China (81071586).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKummerle, A. E., Raimundo, J. M., Leal, C. M., da Silva, G. S., Balliano, T. L., Pereira, M. A., de Simone, C. A., Sudo, R. T., Zapata-Sudo, G., Fraga, C. A. M. & Barreiro, E. J. (2009). Eur. J. Med. Chem. 44, 4004–4009.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Lima Ferreira, M., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o118–o121.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds