metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m725-m726

Bis{benzyl 2-[4-(4-meth­­oxy­phen­yl)butan-2-yl­­idene]hydrazinecarbodi­thio­ato-κ2N2,S}nickel(II)

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 April 2012; accepted 30 April 2012; online 5 May 2012)

The complete mol­ecule of the title complex, [Ni(C19H21N2OS2)2], is generated by the application of twofold symmetry. The NiII atom is N,S-chelated by two hydrazinecarbodithio­ate ligands, which provide an N2S2 donor set that defines a distorted square-planar geometry, the S atoms being approximately cis. The conformation of the chelate ring is an envelope with the NiII atom being the flap atom. The dihedral angle between the least-squares planes through the chelate rings = 30.10 (6)°. Supra­molecular chains propagated by glide symmetry along the c axis and mediated by C—H⋯N contacts feature in the crystal packing.

Related literature

For background to the coordination chemistry of hydrazine carbodithio­ates, see: Khoo et al. (2005[Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441-o2443.]); Chan et al. (2008[Chan, M.-E., Crouse, Karen A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A.R. (2008). Polyhedron, 27, 1141-1149.]); Manan et al. (2012[Manan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173-179.]). For related syntheses, see Hossain et al. (1996[Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207-213.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C19H21N2OS2)2]

  • Mr = 773.71

  • Monoclinic, C 2/c

  • a = 24.0691 (6) Å

  • b = 12.5847 (2) Å

  • c = 12.4179 (3) Å

  • β = 101.857 (2)°

  • V = 3681.16 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 150 K

  • 0.23 × 0.14 × 0.08 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.89, Tmax = 0.94

  • 46243 measured reflections

  • 4223 independent reflections

  • 3750 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.01

  • 4223 reflections

  • 224 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—N2 1.9220 (13)
Ni—S1 2.1543 (4)
N2—Ni—S1 85.92 (4)
N2i—Ni—S1 156.70 (4)
S1i—Ni—S1 93.66 (2)
N2—Ni—N2i 103.49 (8)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯N1ii 0.98 2.62 3.575 (2) 166
Symmetry code: (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In our on-going investigations to expand the scope of hydrazinecarbodithioate derivatives, their coordination chemistry and bio-activities (Khoo et al., 2005; Chan et al., 2008; Manan et al., 2012), the title complex, (I), was synthesized and characterized crystallographically.

In (I), Fig. 1, the NiII atom exists within a distorted square planar cis-N2S2 donor set defined by two N,S-chelating hydrazinecarbodithioate ligands, Table 1. The five-membered chelate ring in non-planar (r.m.s. = 0.239 Å) but has an envelope conformation with the Ni atom being the flap atom. A measure of the distortion from the ideal square planar geometry is the dihedral angle of 30.10 (6)° formed between the least-squares planes through the chelate rings. The coordination geometry in (I) resembles that seen in a closely related analogue (Chan et al., 2008).

The hydrazinecarbodithioate ligand is twisted about the N1—N2 bond with the C1—N1—N2—C9 torsion angle being 146.88 (14)°. The dihedral angle between the terminal benzene and phenyl rings is 89.37 (8)°, indicating an almost orthogonal relationship. The methoxy group is co-planar with the benzene ring to which it is connected as seen in the value of the C19—O1—C16—C15 torsion angle of -1.9 (3)°.

The most prominent feature of the crystal packing is the formation of supramolecular chains mediated by C—H···N contacts, Fig. 2 and Table 1. The chains are propagated by glide symmetry along the c axis.

Related literature top

For background to the coordination chemistry of hydrazine carbodithioates, see: Khoo et al. (2005); Chan et al. (2008); Manan et al. (2012). For related syntheses, see Hossain et al. (1996).

Experimental top

4-(4-Methoxyphenyl)butan-2-one (1.70 g, 0.01 mol) in absolute ethanol (20 ml) was added to S-benzyldithiocarbazate (1.98 g, 0.01 mol, prepared as previously described by Hossain et al., 1996) dissolved in hot absolute ethanol (20 ml). The mixture was heated (~340 K) while being stirred for half an hour and then cooled to room temperature. The Schiff base thus formed was filtered and dried in vacuo over anhydrous silica gel. A combination of hot absolute ethanol solutions of the Schiff base (0.36 g, 10 mmol, in 30 ml) and nickel(II) acetate tetrahydrate (0.12 g, 5 mmol, in 10 ml) was stirred at ~340 K for half an hour. The mixture was cooled to room temperature and a green precipitate formed. Dark-green crystals were obtained from its acetonitrile solution after one week. Yield 66%, M.pt: 417 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by C—H···N interactions, shown as blue dashed lines. Hydrogen atoms not involved in these interactions are omitted.
Bis{benzyl 2-[4-(4-methoxyphenyl)butan-2-ylidene]hydrazinecarbodithioato-κ2N2,S}nickel(II) top
Crystal data top
[Ni(C19H21N2OS2)2]F(000) = 1624
Mr = 773.71Dx = 1.396 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 17769 reflections
a = 24.0691 (6) Åθ = 2.1–28.8°
b = 12.5847 (2) ŵ = 0.79 mm1
c = 12.4179 (3) ÅT = 150 K
β = 101.857 (2)°Block, dark-green
V = 3681.16 (14) Å30.23 × 0.14 × 0.08 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
4223 independent reflections
Radiation source: fine-focus sealed tube3750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 3131
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1616
Tmin = 0.89, Tmax = 0.94l = 1616
46243 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0408P)2 + 4.0091P]
where P = (Fo2 + 2Fc2)/3
4223 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ni(C19H21N2OS2)2]V = 3681.16 (14) Å3
Mr = 773.71Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.0691 (6) ŵ = 0.79 mm1
b = 12.5847 (2) ÅT = 150 K
c = 12.4179 (3) Å0.23 × 0.14 × 0.08 mm
β = 101.857 (2)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
4223 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3750 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.94Rint = 0.041
46243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.01Δρmax = 0.80 e Å3
4223 reflectionsΔρmin = 0.45 e Å3
224 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.72365 (2)0.25000.02370 (9)
S10.519791 (18)0.60653 (3)0.37871 (3)0.02860 (10)
S20.569791 (17)0.65527 (3)0.60936 (3)0.02596 (10)
O10.21872 (5)0.90781 (10)0.20500 (10)0.0370 (3)
N10.51555 (6)0.79888 (10)0.47242 (10)0.0241 (3)
N20.48562 (6)0.81821 (10)0.36271 (10)0.0241 (3)
C10.53185 (6)0.70112 (12)0.48301 (12)0.0230 (3)
C20.57260 (7)0.77439 (12)0.69281 (13)0.0270 (3)
H2A0.59360.83100.66260.032*
H2B0.53360.80020.69180.032*
C30.60211 (7)0.74882 (13)0.80923 (12)0.0253 (3)
C40.65150 (7)0.80300 (13)0.85687 (14)0.0295 (3)
H40.66690.85480.81560.035*
C50.67827 (8)0.78137 (14)0.96470 (15)0.0346 (4)
H50.71160.81940.99730.041*
C60.65693 (8)0.70515 (14)1.02490 (14)0.0340 (4)
H60.67580.69001.09820.041*
C70.60778 (8)0.65067 (14)0.97798 (14)0.0322 (4)
H70.59280.59851.01940.039*
C80.58062 (7)0.67255 (13)0.87054 (13)0.0289 (3)
H80.54700.63500.83860.035*
C90.44507 (7)0.88749 (12)0.35373 (13)0.0252 (3)
C100.42911 (7)0.94234 (13)0.44989 (14)0.0301 (3)
H10A0.44090.89870.51600.045*
H10B0.38790.95270.43560.045*
H10C0.44811.01150.46100.045*
C110.40945 (7)0.91090 (13)0.24206 (13)0.0274 (3)
H11A0.43080.89150.18480.033*
H11B0.40120.98800.23570.033*
C120.35317 (8)0.84817 (16)0.22310 (15)0.0379 (4)
H12A0.36170.77130.23220.045*
H12B0.33160.86910.27950.045*
C130.31683 (7)0.86730 (14)0.10992 (14)0.0300 (3)
C140.27371 (7)0.94139 (14)0.09299 (14)0.0335 (4)
H140.26690.98180.15360.040*
C150.23988 (7)0.95834 (13)0.01120 (14)0.0324 (4)
H150.21031.00970.02140.039*
C160.24986 (7)0.89951 (13)0.09951 (13)0.0283 (3)
C170.29304 (7)0.82389 (14)0.08368 (14)0.0301 (3)
H170.29980.78300.14400.036*
C180.32596 (7)0.80872 (14)0.01994 (14)0.0321 (4)
H180.35550.75730.03020.039*
C190.17215 (9)0.98027 (18)0.22191 (17)0.0487 (5)
H19A0.14520.95890.17660.073*
H19B0.15310.97960.29970.073*
H19C0.18611.05200.20110.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.03115 (16)0.01813 (14)0.01918 (14)0.0000.00098 (11)0.000
S10.0414 (2)0.01877 (18)0.02279 (19)0.00211 (15)0.00002 (16)0.00056 (14)
S20.0314 (2)0.02222 (19)0.02147 (19)0.00228 (15)0.00117 (15)0.00338 (14)
O10.0373 (7)0.0417 (7)0.0275 (6)0.0092 (5)0.0035 (5)0.0002 (5)
N10.0269 (7)0.0232 (6)0.0191 (6)0.0003 (5)0.0025 (5)0.0011 (5)
N20.0289 (7)0.0199 (6)0.0202 (6)0.0010 (5)0.0028 (5)0.0008 (5)
C10.0235 (7)0.0234 (7)0.0205 (7)0.0023 (6)0.0005 (6)0.0019 (6)
C20.0317 (8)0.0234 (7)0.0236 (8)0.0004 (6)0.0003 (6)0.0011 (6)
C30.0270 (8)0.0256 (7)0.0221 (7)0.0032 (6)0.0022 (6)0.0010 (6)
C40.0298 (8)0.0275 (8)0.0301 (8)0.0014 (6)0.0034 (7)0.0002 (6)
C50.0324 (9)0.0339 (9)0.0325 (9)0.0014 (7)0.0047 (7)0.0055 (7)
C60.0400 (10)0.0360 (9)0.0223 (8)0.0094 (7)0.0020 (7)0.0031 (7)
C70.0376 (9)0.0338 (9)0.0255 (8)0.0042 (7)0.0076 (7)0.0049 (7)
C80.0268 (8)0.0315 (8)0.0267 (8)0.0002 (7)0.0018 (6)0.0019 (6)
C90.0265 (8)0.0201 (7)0.0266 (8)0.0025 (6)0.0004 (6)0.0006 (6)
C100.0301 (8)0.0261 (8)0.0314 (8)0.0035 (6)0.0004 (7)0.0020 (6)
C110.0278 (8)0.0246 (7)0.0268 (8)0.0021 (6)0.0011 (6)0.0041 (6)
C120.0351 (9)0.0445 (10)0.0298 (9)0.0110 (8)0.0033 (7)0.0076 (8)
C130.0274 (8)0.0325 (8)0.0278 (8)0.0073 (7)0.0001 (6)0.0031 (7)
C140.0359 (9)0.0332 (9)0.0300 (8)0.0042 (7)0.0035 (7)0.0073 (7)
C150.0317 (9)0.0278 (8)0.0350 (9)0.0036 (7)0.0004 (7)0.0032 (7)
C160.0269 (8)0.0293 (8)0.0261 (8)0.0025 (6)0.0004 (6)0.0004 (6)
C170.0269 (8)0.0358 (9)0.0280 (8)0.0015 (7)0.0071 (6)0.0021 (7)
C180.0231 (8)0.0357 (9)0.0363 (9)0.0021 (7)0.0033 (7)0.0034 (7)
C190.0449 (11)0.0524 (12)0.0401 (11)0.0189 (9)0.0116 (9)0.0004 (9)
Geometric parameters (Å, º) top
Ni—N21.9220 (13)C8—H80.9500
Ni—N2i1.9220 (13)C9—C111.502 (2)
Ni—S1i2.1543 (4)C9—C101.496 (2)
Ni—S12.1543 (4)C10—H10A0.9800
S1—C11.7391 (15)C10—H10B0.9800
S2—C11.7435 (15)C10—H10C0.9800
S2—C21.8157 (16)C11—C121.544 (2)
O1—C161.3731 (19)C11—H11A0.9900
O1—C191.427 (2)C11—H11B0.9900
N1—C11.290 (2)C12—C131.514 (2)
N1—N21.4250 (17)C12—H12A0.9900
N2—C91.296 (2)C12—H12B0.9900
C2—C31.509 (2)C13—C141.379 (2)
C2—H2A0.9900C13—C181.393 (2)
C2—H2B0.9900C14—C151.396 (2)
C3—C81.390 (2)C14—H140.9500
C3—C41.392 (2)C15—C161.384 (2)
C4—C51.388 (2)C15—H150.9500
C4—H40.9500C16—C171.393 (2)
C5—C61.379 (3)C17—C181.379 (2)
C5—H50.9500C17—H170.9500
C6—C71.388 (3)C18—H180.9500
C6—H60.9500C19—H19A0.9800
C7—C81.387 (2)C19—H19B0.9800
C7—H70.9500C19—H19C0.9800
N2—Ni—S1i156.70 (4)C9—C10—H10A109.5
N2i—Ni—S1i85.92 (4)C9—C10—H10B109.5
N2—Ni—S185.92 (4)H10A—C10—H10B109.5
N2i—Ni—S1156.70 (4)C9—C10—H10C109.5
S1i—Ni—S193.66 (2)H10A—C10—H10C109.5
N2—Ni—N2i103.49 (8)H10B—C10—H10C109.5
C1—S1—Ni93.55 (5)C9—C11—C12110.92 (13)
C1—S2—C2101.05 (7)C9—C11—H11A109.5
C16—O1—C19116.58 (14)C12—C11—H11A109.5
C1—N1—N2110.11 (12)C9—C11—H11B109.5
C9—N2—N1114.89 (13)C12—C11—H11B109.5
C9—N2—Ni126.78 (11)H11A—C11—H11B108.0
N1—N2—Ni117.34 (9)C13—C12—C11112.44 (14)
N1—C1—S1125.18 (12)C13—C12—H12A109.1
N1—C1—S2119.97 (12)C11—C12—H12A109.1
S1—C1—S2114.84 (9)C13—C12—H12B109.1
C3—C2—S2109.02 (11)C11—C12—H12B109.1
C3—C2—H2A109.9H12A—C12—H12B107.8
S2—C2—H2A109.9C14—C13—C18118.25 (15)
C3—C2—H2B109.9C14—C13—C12121.48 (16)
S2—C2—H2B109.9C18—C13—C12120.26 (16)
H2A—C2—H2B108.3C13—C14—C15121.46 (16)
C8—C3—C4119.14 (15)C13—C14—H14119.3
C8—C3—C2121.16 (14)C15—C14—H14119.3
C4—C3—C2119.70 (15)C16—C15—C14119.30 (16)
C5—C4—C3120.01 (16)C16—C15—H15120.4
C5—C4—H4120.0C14—C15—H15120.4
C3—C4—H4120.0O1—C16—C15124.44 (15)
C6—C5—C4120.57 (16)O1—C16—C17115.58 (14)
C6—C5—H5119.7C15—C16—C17119.96 (15)
C4—C5—H5119.7C18—C17—C16119.69 (16)
C5—C6—C7119.78 (16)C18—C17—H17120.2
C5—C6—H6120.1C16—C17—H17120.2
C7—C6—H6120.1C17—C18—C13121.34 (16)
C8—C7—C6119.88 (16)C17—C18—H18119.3
C8—C7—H7120.1C13—C18—H18119.3
C6—C7—H7120.1O1—C19—H19A109.5
C7—C8—C3120.61 (16)O1—C19—H19B109.5
C7—C8—H8119.7H19A—C19—H19B109.5
C3—C8—H8119.7O1—C19—H19C109.5
N2—C9—C11119.22 (14)H19A—C19—H19C109.5
N2—C9—C10123.63 (14)H19B—C19—H19C109.5
C11—C9—C10117.06 (14)
N2—Ni—S1—C120.20 (7)C6—C7—C8—C30.1 (3)
N2i—Ni—S1—C194.98 (11)C4—C3—C8—C70.2 (2)
S1i—Ni—S1—C1176.85 (6)C2—C3—C8—C7179.21 (15)
C1—N1—N2—C9146.88 (14)N1—N2—C9—C11177.81 (13)
C1—N1—N2—Ni22.50 (16)Ni—N2—C9—C119.6 (2)
N2i—Ni—N2—C961.33 (12)N1—N2—C9—C101.3 (2)
S1i—Ni—N2—C950.50 (19)Ni—N2—C9—C10166.88 (12)
S1—Ni—N2—C9140.27 (13)N2—C9—C11—C1298.22 (18)
N2i—Ni—N2—N1130.72 (12)C10—C9—C11—C1278.50 (18)
S1i—Ni—N2—N1117.45 (11)C9—C11—C12—C13178.33 (15)
S1—Ni—N2—N127.68 (10)C11—C12—C13—C1496.4 (2)
N2—N1—C1—S10.54 (19)C11—C12—C13—C1884.4 (2)
N2—N1—C1—S2179.85 (10)C18—C13—C14—C150.2 (3)
Ni—S1—C1—N116.98 (14)C12—C13—C14—C15179.42 (16)
Ni—S1—C1—S2162.36 (8)C13—C14—C15—C160.0 (3)
C2—S2—C1—N11.00 (15)C19—O1—C16—C151.9 (3)
C2—S2—C1—S1179.63 (9)C19—O1—C16—C17176.42 (17)
C1—S2—C2—C3177.34 (11)C14—C15—C16—O1178.67 (16)
S2—C2—C3—C860.33 (18)C14—C15—C16—C170.4 (3)
S2—C2—C3—C4120.25 (14)O1—C16—C17—C18178.96 (15)
C8—C3—C4—C50.7 (2)C15—C16—C17—C180.6 (3)
C2—C3—C4—C5178.73 (15)C16—C17—C18—C130.3 (3)
C3—C4—C5—C61.1 (3)C14—C13—C18—C170.1 (3)
C4—C5—C6—C71.0 (3)C12—C13—C18—C17179.30 (16)
C5—C6—C7—C80.5 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···N1ii0.982.623.575 (2)166
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C19H21N2OS2)2]
Mr773.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)24.0691 (6), 12.5847 (2), 12.4179 (3)
β (°) 101.857 (2)
V3)3681.16 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.23 × 0.14 × 0.08
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.89, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
46243, 4223, 3750
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.01
No. of reflections4223
No. of parameters224
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.45

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ni—N21.9220 (13)Ni—S12.1543 (4)
N2—Ni—S185.92 (4)S1i—Ni—S193.66 (2)
N2i—Ni—S1156.70 (4)N2—Ni—N2i103.49 (8)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···N1ii0.982.623.575 (2)166
Symmetry code: (ii) x+1, y+2, z+1.
 

Footnotes

Additional correspondence author, e-mail: kacrouse@gmail.com.

Acknowledgements

Support for the project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS Nos 9199834 and 9174000) and from the Malaysian Ministry of Science, Technology and Innovation (grant No. 09–02-04–0752-EA001). MYT wishes to thank UPM for a Graduate Research Fellowship award. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationChan, M.-E., Crouse, Karen A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A.R. (2008). Polyhedron, 27, 1141–1149.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationHossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.  CSD CrossRef CAS Web of Science
First citationKhoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.  Web of Science CSD CrossRef IUCr Journals
First citationManan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173–179.  Web of Science CSD CrossRef
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m725-m726
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds