

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(5,6-dimethyl-1*H*-benzimidazole- κN^3)(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$,*N*,*O*⁶)nickel(II)

Yue-Hua Li,^a* Feng-Feng Li,^b Xin-Hua Liu^b and Ling-Yan Zhao^c

^aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, ^bCollege of Light Industry, Hebei United University, Tangshan 063009, People's Republic of China, and ^cQian'an College, Hebei United University, Tangshan 063009, People's Republic of China Correspondence e-mail: tsdgying@126.com

Received 21 April 2012; accepted 1 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.087; data-to-parameter ratio = 13.6.

The title mononuclear complex, $[Ni(C_7H_3NO_4)(C_9H_{10}N_2)_3]$, shows a central Ni^{II} atom which is coordinated by two carboxylate O atoms and the N atom from a pyridine-2,6dicarboxylate ligand and by three N atoms from different 5,6dimethyl-1*H*-benzimidazole ligands in a distorted octahedral geometry. The crystal structure shows intermolecular N-H···O hydrogen bonds.

Related literature

For related structures of dipicolinate complexes, see: How et al. (1991); Dong et al. (2010); Liu et al. (2011).

 $\gamma = 74.078 \ (1)^{\circ}$

Z = 2

V = 1625.3 (3) Å³

Mo $K\alpha$ radiation

 $0.18 \times 0.15 \times 0.14~\rm{mm}$

12396 measured reflections 5721 independent reflections

5078 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.65 \text{ mm}^{-3}$

T = 293 K

 $R_{\rm int} = 0.021$

421 parameters

 $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Experimental

Crystal data

 $[Ni(C_7H_3NO_4)(C_9H_{10}N_2)_3]$ $M_r = 662.38$ Triclinic, $P\overline{1}$ a = 7.5884 (7) Å b = 9.4499 (9) Å c = 23.839 (2) Å $\alpha = 89.0040$ (9)° $\beta = 81.484$ (1)°

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	
$wR(F^2) = 0.087$	
S = 0.94	
5721 reflections	

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3–H3A···O4 ⁱ	0.86	2.27	2.877 (2)	127
$N5-H5A\cdots O1^{ii}$	0.86	2.14	2.786 (2)	132
$N7 - H7A \cdots O4^{iii}$	0.86	1.94	2.788 (2)	171

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) x + 1, y - 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Hebei United University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2371).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, G.-Y., Fan, L.-H., Yang, L.-X. & Khan, I. U. (2010). Acta Cryst. E66, m532.

How, G. A., Whei, L. K., Graeme, R. H., Jeffrey, A. C., Mary, M. & Nick, C. (1991). J. Chem. Soc. Dalton Trans. pp. 3193–3291.

Liu, T. F., Wu, W. F., Wan, C. Q., He, C. H., Jiao, C. H. & Cui, G. H. (2011). J. Coord. Chem. 64, 975–986.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m739 [doi:10.1107/S1600536812019502]

Tris(5,6-dimethyl-1*H*-benzimidazole- κN^3)(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$, *N*, *O*⁶)nickel(II)

Yue-Hua Li, Feng-Feng Li, Xin-Hua Liu and Ling-Yan Zhao

S1. Comment

Benzimidazole and its derivatives are widely used as intermediates in synthesis and commonly coordinate to transition metals by N atom. Some Cu(II) dipicolinate complexes with additional imidazole ligands have been reported (How *et al.*, 1991; Dong *et al.*, 2010; Liu *et al.*, 2011). Here, we report the crystal structure of the title compound.

The asymmetric unit of (I) contains one nickel(II), one 2,6- pyridinedicarboxylato and three 5,6-dimethylbenzimidazole ligands. The nickel center is six-coordinated in a distorted octahedral coordination geometry (Fig.1). Each nickel(II) is coordinated by one tridentate dipicolinato ligand *via* its carboxylate oxygen atoms and the pyridine nitrogen atom as donors (Ni1—N1= 1.997 (2); Ni1—O2=2.134 (1); Ni1—O3= 2.190 (1) Å). Three additional N donor atoms from three 5,6-dimethylbenzimidazole ligands complete the coordination sphere of nickel (Ni1- N from 2.056 (2) to 2.123 (2) Å). It is noteworthy that there exist strong N—H···O hydrogen bond interactions (Table 1) involving the carboxy group oxygen atoms of dipicolinato ligands as well as the NH functions of the benzimidazole ligands.

S2. Experimental

A mixture of Ni(NO₃)₂.6H₂O (290.8 mg, 0.5 mmol), 2,6-pyridinedicarboxylic acid (167 mg, 1 mmol), NaOH (80 mg, 2 mm mol), 5,6-dimethylbenzimidazole (73 mg, 0.5 mmol) and water (12 ml) was sealed in a 25 ml teflon-lined stainless steel reactor and heated to 413 K for 72 h. The reaction was cooled to room temperature over a period of 24 h. Green prismatic crystals of (I) suitable for X- ray diffraction analysis were obtained with a yield of 38% (based Ni(NO₃)₂.6H₂O).

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H, N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$ for the NH group.

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Tris(5,6-dimethyl-1*H*-benzimidazole- κN^3)(pyridine-2,6- dicarboxylato- $\kappa^3 O^2$, *N*, *O*⁶)nickel(II)

Crystal data	
$[Ni(C_{7}H_{3}NO_{4})(C_{9}H_{10}N_{2})_{3}]$ $M_{r} = 662.38$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.5884 (7) Å b = 9.4499 (9) Å c = 23.839 (2) Å a = 89.0040 (9)° $\beta = 81.484$ (1)° $\gamma = 74.078$ (1)°	$V = 1625.3 (3) Å^{3}$ Z = 2 F(000) = 692 $D_{x} = 1.353 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å $\mu = 0.65 \text{ mm}^{-1}$ T = 293 K Block, green $0.18 \times 0.15 \times 0.14 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.872, T_{max} = 0.935$	12396 measured reflections 5721 independent reflections 5078 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -28 \rightarrow 28$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.087$	neighbouring sites
S = 0.94	H-atom parameters constrained
5721 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0503P)^2 + 0.7157P]$
421 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.34 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.99661 (3)	0.63280 (2)	0.222282 (9)	0.02907 (9)
N1	0.9467 (2)	0.84068 (16)	0.19677 (6)	0.0297 (3)
N4	0.8878 (2)	0.57135 (18)	0.15400 (7)	0.0365 (4)
N2	1.1152 (2)	0.68619 (17)	0.29151 (7)	0.0342 (4)
N6	1.0510 (2)	0.41948 (17)	0.24934 (7)	0.0362 (4)
O3	0.71968 (17)	0.73993 (13)	0.26733 (6)	0.0349 (3)
O2	1.24640 (17)	0.62840 (15)	0.16685 (6)	0.0389 (3)
O4	0.51849 (18)	0.96040 (15)	0.28495 (7)	0.0459 (4)
C23	0.9603 (3)	0.1205 (2)	0.33262 (9)	0.0443 (5)
H23	1.0312	0.0285	0.3419	0.053*
C7	0.6658 (2)	0.87699 (19)	0.26080 (8)	0.0313 (4)
C6	0.7936 (2)	0.9412 (2)	0.21938 (8)	0.0318 (4)
C25	1.2158 (3)	0.3253 (2)	0.24373 (9)	0.0423 (5)
H25	1.3208	0.3441	0.2232	0.051*
С9	1.0555 (3)	0.6914 (2)	0.35000 (8)	0.0334 (4)
C1	1.0729 (3)	0.8747 (2)	0.15801 (8)	0.0351 (4)
01	1.3415 (2)	0.7556 (2)	0.09431 (7)	0.0637 (5)
N7	1.2178 (2)	0.19856 (18)	0.27062 (8)	0.0453 (4)
H7A	1.3124	0.1237	0.2712	0.054*
C17	0.9343 (3)	0.3497 (2)	0.28265 (8)	0.0337 (4)
N3	1.3074 (2)	0.7679 (2)	0.33549 (7)	0.0439 (4)
H3A	1.4004	0.7997	0.3400	0.053*
C8	1.2639 (3)	0.7329 (2)	0.28601 (9)	0.0392 (5)
H8	1.3330	0.7411	0.2511	0.047*
C2	1.2345 (3)	0.7425 (2)	0.13747 (8)	0.0393 (5)

C27	0.9756 (3)	0.4677 (2)	0.11018 (8)	0.0343 (4)
C18	0.7458 (3)	0.3971 (2)	0.30265 (8)	0.0370 (4)
H18	0.6745	0.4876	0.2922	0.044*
C28	1.1593 (3)	0.3843 (2)	0.09756 (8)	0.0389 (4)
H28	1.2472	0.3954	0.1192	0.047*
C24	1.0398 (3)	0.2113 (2)	0.29699 (8)	0.0385 (5)
C16	0.9040 (3)	0.6554 (2)	0.38086 (9)	0.0408 (5)
H16	0.8247	0.6195	0.3625	0.049*
C19	0.6656 (3)	0.3076 (2)	0.33837 (9)	0.0392 (5)
C34	0.8467 (3)	0.4538 (2)	0.07628 (9)	0.0400 (5)
C10	1.1749 (3)	0.7435 (2)	0.37780 (9)	0.0389 (4)
N5	0.6813 (2)	0.5511 (2)	0.10001 (8)	0.0508 (5)
H5A	0.5765	0.5671	0.0879	0.061*
C22	0.7744 (3)	0.1691 (2)	0.35405 (9)	0.0426 (5)
C29	1.2092 (3)	0.2845 (2)	0.05225 (9)	0.0441 (5)
C5	0.7630 (3)	1.0872 (2)	0.20455 (10)	0.0462 (5)
Н5	0.6570	1.1581	0.2207	0.055*
C3	1.0500 (3)	1.0176 (3)	0.14083 (10)	0.0513 (6)
Н3	1.1374	1.0417	0.1135	0.062*
C26	0.7146 (3)	0.6156 (2)	0.14517 (9)	0.0457 (5)
H26	0.6236	0.6855	0.1682	0.055*
C14	0.7053 (4)	0.6362 (4)	0.47250 (12)	0.0769 (8)
H14A	0.6200	0.7242	0.4900	0.115*
H14B	0.7447	0.5672	0.5013	0.115*
H14C	0.6455	0.5934	0.4473	0.115*
C32	1.0753 (4)	0.2693 (2)	0.01906 (9)	0.0498 (6)
C33	0.8945 (3)	0.3547 (3)	0.03046 (9)	0.0502 (5)
H33	0.8070	0.3464	0.0082	0.060*
C15	0.8732 (3)	0.6738 (3)	0.43916 (9)	0.0496 (5)
C11	1.1441 (3)	0.7635 (3)	0.43657 (9)	0.0519 (6)
H11	1.2237	0.7997	0.4548	0.062*
C31	1.1298 (5)	0.1571 (3)	-0.02934 (11)	0.0750 (8)
H31A	1.0250	0.1635	-0.0484	0.112*
H31B	1.1704	0.0601	-0.0147	0.112*
H31C	1.2287	0.1765	-0.0556	0.112*
C12	0.9932 (4)	0.7287 (3)	0.46718 (9)	0.0554 (6)
C4	0.8950 (4)	1.1245 (3)	0.16495 (11)	0.0579 (6)
H4	0.8790	1.2220	0.1546	0.069*
C20	0.4618 (3)	0.3609 (3)	0.36204 (11)	0.0574 (6)
H20A	0.4480	0.3879	0.4014	0.086*
H20B	0.4040	0.2837	0.3582	0.086*
H20C	0.4039	0.4449	0.3415	0.086*
C13	0.9562 (5)	0.7524 (4)	0.53117 (11)	0.0908 (10)
H13A	1.0543	0.7846	0.5433	0.136*
H13B	0.9503	0.6616	0.5491	0.136*
H13C	0.8405	0.8258	0.5416	0.136*
C21	0.6875 (4)	0.0748 (3)	0.39503 (11)	0.0608 (7)
H21A	0.7793	-0.0147	0.4009	0.091*

supporting information

H21B	0.5884	0.0518	0.3796	0.091*
H21C	0.6395	0.1274	0.4306	0.091*
C30	1.4084 (4)	0.1915 (3)	0.03947 (11)	0.0643 (7)
H30A	1.4795	0.2179	0.0656	0.096*
H30B	1.4592	0.2084	0.0014	0.096*
H30C	1.4128	0.0894	0.0432	0.096*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02265 (13)	0.02596 (14)	0.03356 (14)	-0.00152 (9)	0.00148 (9)	0.00487 (9)
N1	0.0260 (8)	0.0300 (8)	0.0320 (8)	-0.0065 (6)	-0.0031 (6)	0.0069 (6)
N4	0.0296 (8)	0.0356 (9)	0.0405 (9)	-0.0043 (7)	-0.0027 (7)	0.0024 (7)
N2	0.0307 (8)	0.0341 (8)	0.0354 (9)	-0.0071 (7)	-0.0015 (7)	0.0052 (7)
N6	0.0329 (9)	0.0284 (8)	0.0421 (9)	-0.0010 (7)	-0.0037 (7)	0.0052 (7)
O3	0.0266 (6)	0.0282 (7)	0.0438 (8)	-0.0027 (5)	0.0035 (5)	0.0076 (6)
O2	0.0274 (7)	0.0441 (8)	0.0395 (8)	-0.0039 (6)	0.0022 (6)	0.0033 (6)
O4	0.0290 (7)	0.0337 (8)	0.0642 (10)	0.0022 (6)	0.0063 (7)	0.0032 (7)
C23	0.0577 (14)	0.0256 (10)	0.0444 (12)	-0.0020 (9)	-0.0101 (10)	0.0061 (9)
C7	0.0239 (9)	0.0286 (10)	0.0383 (10)	-0.0027 (7)	-0.0034 (8)	0.0021 (8)
C6	0.0295 (9)	0.0275 (9)	0.0364 (10)	-0.0046 (7)	-0.0052 (8)	0.0052 (8)
C25	0.0344 (11)	0.0362 (11)	0.0489 (12)	-0.0003 (9)	-0.0014 (9)	0.0053 (9)
C9	0.0337 (10)	0.0284 (9)	0.0345 (10)	-0.0037 (8)	-0.0036 (8)	0.0041 (8)
C1	0.0314 (10)	0.0448 (11)	0.0312 (10)	-0.0152 (8)	-0.0038 (8)	0.0096 (8)
01	0.0379 (8)	0.0897 (13)	0.0485 (9)	-0.0043 (8)	0.0132 (7)	0.0230 (9)
N7	0.0388 (10)	0.0315 (9)	0.0539 (11)	0.0081 (7)	-0.0040 (8)	0.0064 (8)
C17	0.0397 (10)	0.0241 (9)	0.0354 (10)	-0.0049 (8)	-0.0071 (8)	0.0027 (8)
N3	0.0341 (9)	0.0525 (11)	0.0479 (10)	-0.0169 (8)	-0.0058 (8)	0.0023 (8)
C8	0.0336 (10)	0.0428 (11)	0.0391 (11)	-0.0106 (9)	0.0006 (8)	0.0053 (9)
C2	0.0257 (10)	0.0573 (13)	0.0335 (10)	-0.0108 (9)	-0.0011 (8)	0.0072 (9)
C27	0.0384 (10)	0.0300 (10)	0.0337 (10)	-0.0101 (8)	-0.0026 (8)	0.0073 (8)
C18	0.0364 (10)	0.0260 (9)	0.0441 (11)	-0.0006 (8)	-0.0071 (9)	0.0038 (8)
C28	0.0390 (11)	0.0367 (11)	0.0387 (11)	-0.0091 (9)	-0.0010 (9)	0.0034 (8)
C24	0.0424 (11)	0.0283 (10)	0.0394 (11)	0.0003 (8)	-0.0082 (9)	0.0006 (8)
C16	0.0403 (11)	0.0423 (11)	0.0398 (11)	-0.0138 (9)	-0.0016 (9)	0.0052 (9)
C19	0.0439 (11)	0.0338 (10)	0.0394 (11)	-0.0105 (9)	-0.0047 (9)	0.0006 (8)
C34	0.0427 (11)	0.0402 (11)	0.0395 (11)	-0.0150 (9)	-0.0081 (9)	0.0096 (9)
C10	0.0370 (11)	0.0362 (11)	0.0415 (11)	-0.0070 (8)	-0.0059 (9)	0.0045 (9)
N5	0.0359 (10)	0.0623 (12)	0.0540 (11)	-0.0091 (9)	-0.0143 (8)	0.0018 (9)
C22	0.0581 (14)	0.0325 (11)	0.0369 (11)	-0.0130 (10)	-0.0055 (10)	0.0033 (9)
C29	0.0530 (13)	0.0370 (11)	0.0373 (11)	-0.0109 (10)	0.0059 (9)	0.0028 (9)
C5	0.0465 (12)	0.0288 (10)	0.0581 (14)	-0.0048 (9)	-0.0032 (10)	0.0081 (9)
C3	0.0533 (14)	0.0510 (13)	0.0524 (13)	-0.0238 (11)	-0.0008 (11)	0.0204 (11)
C26	0.0324 (11)	0.0499 (13)	0.0494 (13)	-0.0031 (9)	-0.0041 (9)	-0.0001 (10)
C14	0.0722 (19)	0.104 (2)	0.0523 (15)	-0.0346 (17)	0.0154 (13)	0.0067 (15)
C32	0.0753 (16)	0.0429 (12)	0.0329 (11)	-0.0229 (12)	-0.0008 (11)	0.0032 (9)
C33	0.0646 (15)	0.0521 (13)	0.0414 (12)	-0.0255 (12)	-0.0141 (11)	0.0078 (10)
C15	0.0527 (13)	0.0550 (14)	0.0378 (11)	-0.0146 (11)	0.0026 (10)	0.0069 (10)

supporting information

C11	0.0561 (14)	0.0587 (14)	0.0437 (12)	-0.0166 (11)	-0.0150 (11)	-0.0005 (10)
C31	0.105 (2)	0.0683 (18)	0.0490 (15)	-0.0240 (17)	-0.0016 (15)	-0.0136 (13)
C12	0.0630 (15)	0.0625 (15)	0.0365 (12)	-0.0121 (12)	-0.0042 (11)	0.0030 (11)
C4	0.0665 (16)	0.0356 (12)	0.0719 (16)	-0.0181 (11)	-0.0056 (13)	0.0220 (11)
C20	0.0497 (14)	0.0542 (14)	0.0639 (15)	-0.0128 (11)	0.0020 (11)	0.0094 (12)
C13	0.107 (3)	0.128 (3)	0.0393 (15)	-0.039 (2)	-0.0024 (15)	-0.0056 (16)
C21	0.0778 (18)	0.0452 (14)	0.0577 (15)	-0.0200 (12)	-0.0007 (13)	0.0167 (11)
C30	0.0601 (15)	0.0596 (16)	0.0592 (15)	-0.0043 (12)	0.0143 (12)	-0.0126 (12)

Geometric parameters (Å, °)

Ni1—N1	1.9976 (15)	C16—H16	0.9300	
Ni1—N6	2.0561 (15)	C19—C22	1.420 (3)	
Ni1—N4	2.0886 (16)	C19—C20	1.513 (3)	
Ni1—N2	2.1227 (16)	C34—C33	1.390 (3)	
Ni1-02	2.1348 (13)	C34—N5	1.384 (3)	
Ni1—O3	2.1901 (12)	C10—C11	1.393 (3)	
N1-C6	1.330 (2)	N5—C26	1.335 (3)	
N1-C1	1.331 (2)	N5—H5A	0.8600	
N4—C26	1.313 (3)	C22—C21	1.511 (3)	
N4—C27	1.402 (2)	C29—C32	1.414 (3)	
N2-C8	1.309 (3)	C29—C30	1.515 (3)	
N2—C9	1.398 (2)	C5—C4	1.386 (3)	
N6-C25	1.310(2)	С5—Н5	0.9300	
N6—C17	1.394 (2)	C3—C4	1.379 (3)	
O3—C7	1.261 (2)	С3—Н3	0.9300	
O2—C2	1.265 (2)	C26—H26	0.9300	
O4—C7	1.243 (2)	C14—C15	1.523 (3)	
C23—C22	1.379 (3)	C14—H14A	0.9600	
C23—C24	1.389 (3)	C14—H14B	0.9600	
С23—Н23	0.9300	C14—H14C	0.9600	
С7—С6	1.517 (3)	C32—C33	1.378 (3)	
C6—C5	1.384 (3)	C32—C31	1.512 (3)	
C25—N7	1.346 (3)	С33—Н33	0.9300	
С25—Н25	0.9300	C15—C12	1.413 (3)	
C9—C10	1.391 (3)	C11—C12	1.379 (3)	
C9—C16	1.391 (3)	C11—H11	0.9300	
C1—C3	1.377 (3)	C31—H31A	0.9600	
C1—C2	1.518 (3)	C31—H31B	0.9600	
O1—C2	1.239 (2)	C31—H31C	0.9600	
N7-C24	1.377 (3)	C12—C13	1.519 (3)	
N7—H7A	0.8600	C4—H4	0.9300	
C17—C18	1.389 (3)	C20—H20A	0.9600	
C17—C24	1.400 (3)	C20—H20B	0.9600	
N3—C8	1.341 (3)	С20—Н20С	0.9600	
N3—C10	1.379 (3)	C13—H13A	0.9600	
N3—H3A	0.8600	C13—H13B	0.9600	
С8—Н8	0.9300	C13—H13C	0.9600	

C27—C28	1.391 (3)	C21—H21A	0.9600
С27—С34	1.391 (3)	C21—H21B	0.9600
C18—C19	1.384 (3)	C21—H21C	0.9600
C18—H18	0.9300	C30—H30A	0.9600
C28—C29	1.385 (3)	C30—H30B	0.9600
C28—H28	0.9300	C30—H30C	0.9600
C16—C15	1.381 (3)		
N1—Ni1—N6	179.06 (6)	C22—C19—C20	120.27 (19)
N1—Ni1—N4	91.46 (6)	C33—C34—N5	133.1 (2)
N6—Ni1—N4	89.43 (6)	C33—C34—C27	121.8 (2)
N1—Ni1—N2	90.59 (6)	N5—C34—C27	105.10 (18)
N6—Ni1—N2	88.51 (6)	N3—C10—C9	105.30 (17)
N4—Ni1—N2	177.57 (6)	N3—C10—C11	133.4 (2)
N1—Ni1—O2	77.98 (6)	C9—C10—C11	121.2 (2)
N6—Ni1—O2	101.73 (6)	C26—N5—C34	107.34 (17)
N4—Ni1—O2	89.53 (6)	C26—N5—H5A	126.3
N2—Ni1—O2	89.62 (6)	C34—N5—H5A	126.3
N1—Ni1—O3	76.12 (5)	C23—C22—C19	120.33 (19)
N6—Ni1—O3	104.15 (6)	C23—C22—C21	119.6 (2)
N4—Ni1—O3	92.00 (6)	C19—C22—C21	120.1 (2)
N2—Ni1—O3	89.76 (6)	C28—C29—C32	120.3 (2)
O2—Ni1—O3	154.09 (5)	C28—C29—C30	118.8 (2)
C6—N1—C1	121.90 (16)	C32—C29—C30	120.9 (2)
C6—N1—Ni1	120.19 (12)	C6—C5—C4	118.0 (2)
C1—N1—Ni1	117.88 (13)	С6—С5—Н5	121.0
C26—N4—C27	104.39 (17)	С4—С5—Н5	121.0
C26—N4—Ni1	126.53 (14)	C1—C3—C4	118.7 (2)
C27—N4—Ni1	128.93 (13)	С1—С3—Н3	120.7
C8—N2—C9	104.53 (16)	С4—С3—Н3	120.7
C8—N2—Ni1	124.08 (14)	N4—C26—N5	113.77 (19)
C9—N2—Ni1	131.26 (13)	N4—C26—H26	123.1
C25—N6—C17	105.31 (16)	N5—C26—H26	123.1
C25—N6—Ni1	124.83 (14)	C15—C14—H14A	109.5
C17—N6—Ni1	129.39 (12)	C15—C14—H14B	109.5
C7—O3—Ni1	114.55 (11)	H14A—C14—H14B	109.5
C2—O2—Ni1	113.29 (12)	C15—C14—H14C	109.5
C22—C23—C24	118.82 (18)	H14A—C14—H14C	109.5
С22—С23—Н23	120.6	H14B—C14—H14C	109.5
C24—C23—H23	120.6	C33—C32—C29	120.9 (2)
O4—C7—O3	125.25 (17)	C33—C32—C31	119.2 (2)
O4—C7—C6	118.94 (16)	C29—C32—C31	119.9 (2)
O3—C7—C6	115.81 (15)	C32—C33—C34	118.1 (2)
N1—C6—C5	120.68 (18)	С32—С33—Н33	121.0
N1—C6—C7	112.95 (15)	С34—С33—Н33	121.0
C5—C6—C7	126.36 (17)	C16—C15—C12	120.6 (2)
N6—C25—N7	113.26 (19)	C16—C15—C14	118.6 (2)
N6—C25—H25	123.4	C12-C15-C14	120.7 (2)

N7—C25—H25	123.4	C12—C11—C10	118.6 (2)
C10—C9—C16	120.18 (18)	C12—C11—H11	120.7
C10—C9—N2	109.36 (17)	C10-C11-H11	120.7
C16—C9—N2	130.46 (18)	С32—С31—Н31А	109.5
N1—C1—C3	120.40 (19)	С32—С31—Н31В	109.5
N1—C1—C2	112.89 (16)	H31A—C31—H31B	109.5
C3—C1—C2	126.71 (18)	С32—С31—Н31С	109.5
C25—N7—C24	107.06 (16)	H31A—C31—H31C	109.5
C25—N7—H7A	126.5	H31B—C31—H31C	109.5
C24—N7—H7A	126.5	C11—C12—C15	120.3 (2)
C18—C17—N6	131.03 (17)	C11—C12—C13	119.2 (2)
C18—C17—C24	120.27 (18)	C15—C12—C13	120.5 (2)
N6-C17-C24	108.68 (17)	C3—C4—C5	120.3 (2)
C8—N3—C10	107.15 (17)	С3—С4—Н4	119.8
C8—N3—H3A	126.4	С5—С4—Н4	119.8
C10—N3—H3A	126.4	С19—С20—Н20А	109.5
N2—C8—N3	113.66 (18)	С19—С20—Н20В	109.5
N2—C8—H8	123.2	H20A—C20—H20B	109.5
N3—C8—H8	123.2	С19—С20—Н20С	109.5
O1—C2—O2	126.2 (2)	H20A—C20—H20C	109.5
O1—C2—C1	118.03 (19)	H20B—C20—H20C	109.5
O2—C2—C1	115.77 (16)	С12—С13—Н13А	109.5
C28—C27—C34	119.94 (18)	C12—C13—H13B	109.5
C28—C27—N4	130.66 (18)	H13A—C13—H13B	109.5
C34—C27—N4	109.40 (17)	C12—C13—H13C	109.5
C19—C18—C17	119.02 (17)	H13A—C13—H13C	109.5
C19—C18—H18	120.5	H13B—C13—H13C	109.5
C17—C18—H18	120.5	C22—C21—H21A	109.5
C29—C28—C27	119.0 (2)	C22—C21—H21B	109.5
С29—С28—Н28	120.5	H21A—C21—H21B	109.5
С27—С28—Н28	120.5	C22—C21—H21C	109.5
N7—C24—C23	133.22 (18)	H21A—C21—H21C	109.5
N7—C24—C17	105.66 (17)	H21B—C21—H21C	109.5
C23—C24—C17	121.09 (19)	С29—С30—Н30А	109.5
C15—C16—C9	119.0 (2)	С29—С30—Н30В	109.5
C15—C16—H16	120.5	H30A—C30—H30B	109.5
С9—С16—Н16	120.5	С29—С30—Н30С	109.5
C18—C19—C22	120.42 (19)	H30A—C30—H30C	109.5
C18—C19—C20	119.28 (18)	H30B-C30-H30C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
N3—H3A····O4 ⁱ	0.86	2.27	2.877 (2)	127
N5—H5A····O1 ⁱⁱ	0.86	2.14	2.786 (2)	132
N7—H7A····O4 ⁱⁱⁱ	0.86	1.94	2.788 (2)	171

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*-1, *z*.