organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1644-o1645

(E)-1-(2,4-Di­nitro­phen­yl)-2-[1-(3-fluoro­phen­yl)ethyl­­idene]hydrazine

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 8 April 2012; accepted 30 April 2012; online 5 May 2012)

The mol­ecule of the title hydrazone derivative, C14H11FN4O4, is nearly planar, with a dihedral angle between the benzene rings of 3.71 (7)°. The central ethyl­idenehydrazine N—N=C—C plane makes dihedral angles of 5.32 (10) and 9.02 (10)° with the 2,4-dinitro- and 3-fluoro-substituted benzene rings, respectively. An intra­molecular N—H⋯O bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into a sheet parallel to (10-1). The mol­ecules are further stacked along the a axis by ππ inter­actions with centroid–centroid distances of 3.6314 (9) and 3.7567 (10) Å. A C⋯F short contact [2.842 (3) Å] is observed. The 3-fluoro­phenyl group is disordered over two orientations with a site-occupancy ratio of 0.636 (3):0.364 (3).

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Chantrapromma et al. (2011[Chantrapromma, S., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Fun, H.-K. (2011). Acta Cryst. E67, o3499-o3500.]); Fun et al. (2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.], 2012[Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Karalai, C. (2012). Acta Cryst. E68, o704-o705.]); Nilwanna et al. (2011[Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084-o3085.]). For background to and the biological activity of hydro­zones, see: Cui et al. (2010[Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576-5584.]); Gokce et al. (2009[Gokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]); Krishnamoorthy et al. (2011[Krishnamoorthy, P., Sathyadevi, P., Senthikumar, K., Muthiah, T., Ramesh, R. & Dharmaraj, N. (2011). Inorg. Chem. Commun. 14, 1318-1322.]); Molyneux (2004[Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211-219.]); Wang et al. (2009[Wang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425-2433.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11FN4O4

  • Mr = 318.27

  • Monoclinic, P 21 /c

  • a = 7.0165 (6) Å

  • b = 13.3336 (11) Å

  • c = 14.4498 (12) Å

  • β = 94.791 (2)°

  • V = 1347.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.39 × 0.15 × 0.14 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.982

  • 15079 measured reflections

  • 3874 independent reflections

  • 3126 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.155

  • S = 1.07

  • 3874 reflections

  • 223 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.89 (2) 1.90 (2) 2.6038 (18) 135 (2)
C9—H9A⋯O1i 0.93 2.58 3.413 (2) 150
C13—H13A⋯O4ii 0.93 2.44 3.176 (2) 137
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The variety of interesting biological activities of hydrazones and their complexes such as antibacterial, antifungal, anti-inflammatory as well as antioxidant properties (Cui et al., 2010; Gokce et al., 2009; Krishnamoorthy et al., 2011; Wang et al., 2009) has prompted us to synthesize several hydrazone derivatives and to study for their biological activities. However the title compound (I) which was synthesized for the evaluation of its antioxidant activity by DPPH scavenging (Molyneux, 2004) was found to be inactive. Herein we report the synthesis and crystal structure of (I).

In the molecular structure of (I), C14H11FN4O4, the F atoms of the 3-fluorophenyl group is disordered over two positions with the major component A and the minor B component rotated by 180° about the C7—C8 bond and having a refined site-occupancy ratio of 0.636 (3):0.364 (3) (Fig. 1). The molecule is nearly planar with a dihedral angle between the two benzene rings being 3.71 (7)°. The middle ethylidenehydrazine bridge is planar with the torsion angle N2–N1–C7–C14 = 0.8 (2)°. The mean plane through this middle bridge makes dihedral angles of 5.32 (10) and 9.02 (10)° with the 2,4-dinitrophenyl and 3-fluorophenyl rings, respectively. The two nitro groups of the 2,4-dinitrophenyl unit are slightly twisted with the attached benzene ring as indicated by the torsion angles O1–N3–C2–C1 = -3.8 (2)°, O2–N3–C2–C1 = 176.52 (15)°, O3–N4–C4–C3 = -8.3 (2)° and O4–N4–C4–C3 = 171.96 (16)°. An intramolecular N2—H1N2···O1 hydrogen bond (Fig.1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and are comparable with the closely related structures (Chantrapromma et al., 2011; Fun et al., 2011, 2012; Nilwanna et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by weak C—H···O interactions (Table 1) into a sheet parallel to the (101) plane and these sheets are stacked along the a axis by ππ interactions with centroid-to-centroid distances Cg1···Cg2 = 3.7567 (10)iii and 3.6314 (9)iv Å [symmetry codes (iii) = -x, 1-y, 1-z and (iv) = 1-x, 1-y, 1-z)]. A C14···F1Bv [2.905 (3) Å ; symmetry code (v) = -x, -1/2+y, 1/2-z] short contact is observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2011); Fun et al. (2011, 2012); Nilwanna et al. (2011). For background to and the biological activity of hydrozones, see: Cui et al. (2010); Gokce et al. (2009); Krishnamoorthy et al. (2011); Molyneux (2004); Wang et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (98 %, 0.50 ml) was slowly added with stirring. 3-Fluoroacetophenone (0.25 ml, 2 mmol) was then added to the solution with continuous stirring. The solution was stirred for 1 hr yielding an yellow solid, which was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days. M.p. 503-504 K.

Refinement top

Amide H atom was located in a Fourier difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The F atom was found to be disordered over two sites in a 0.636 (3): 0.364 (3) occupancy ratio. In the final refinement, distance restraints were used for the disordered C—F bonds.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 45% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(2,4-Dinitrophenyl)-2-[1-(3-fluorophenyl)ethylidene]hydrazine top
Crystal data top
C14H11FN4O4F(000) = 656
Mr = 318.27Dx = 1.569 Mg m3
Monoclinic, P21/cMelting point = 503–504 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.0165 (6) ÅCell parameters from 3874 reflections
b = 13.3336 (11) Åθ = 2.1–30.0°
c = 14.4498 (12) ŵ = 0.13 mm1
β = 94.791 (2)°T = 100 K
V = 1347.1 (2) Å3Block, yellow
Z = 40.39 × 0.15 × 0.14 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3874 independent reflections
Radiation source: sealed tube3126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.952, Tmax = 0.982k = 1818
15079 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.806P]
where P = (Fo2 + 2Fc2)/3
3874 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.70 e Å3
2 restraintsΔρmin = 0.59 e Å3
Crystal data top
C14H11FN4O4V = 1347.1 (2) Å3
Mr = 318.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0165 (6) ŵ = 0.13 mm1
b = 13.3336 (11) ÅT = 100 K
c = 14.4498 (12) Å0.39 × 0.15 × 0.14 mm
β = 94.791 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3126 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.982Rint = 0.054
15079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0522 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.70 e Å3
3874 reflectionsΔρmin = 0.59 e Å3
223 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.16769 (19)0.27587 (9)0.33374 (8)0.0286 (3)
O20.2526 (2)0.12572 (9)0.37606 (9)0.0362 (3)
O30.4548 (2)0.04192 (10)0.68409 (10)0.0395 (3)
O40.5525 (2)0.15695 (12)0.78252 (10)0.0421 (4)
N10.22627 (19)0.52482 (9)0.47367 (9)0.0204 (3)
N20.2316 (2)0.42615 (10)0.44717 (9)0.0211 (3)
H1N20.187 (4)0.4037 (18)0.3918 (17)0.039 (6)*
N30.2368 (2)0.21543 (10)0.39303 (9)0.0239 (3)
N40.4801 (2)0.13015 (11)0.70636 (10)0.0283 (3)
C10.2965 (2)0.35508 (11)0.50920 (10)0.0190 (3)
C20.2999 (2)0.25164 (11)0.48499 (10)0.0197 (3)
C30.3613 (2)0.17866 (11)0.54990 (11)0.0212 (3)
H3A0.36240.11130.53320.025*
C40.4199 (2)0.20773 (12)0.63873 (11)0.0224 (3)
C50.4229 (2)0.30902 (13)0.66526 (11)0.0231 (3)
H5A0.46560.32720.72560.028*
C60.3626 (2)0.38075 (12)0.60177 (10)0.0210 (3)
H6A0.36490.44780.61960.025*
C70.1518 (2)0.58571 (11)0.41102 (10)0.0202 (3)
C80.1511 (2)0.69296 (11)0.43865 (11)0.0205 (3)
C90.1014 (2)0.76901 (13)0.37412 (12)0.0264 (3)
H9A0.06440.75340.31250.032*
C100.1085 (3)0.86754 (13)0.40379 (13)0.0332 (4)
H10A0.07550.91750.36050.040*0.636 (4)
F1A0.2507 (3)0.84685 (12)0.64414 (10)0.0370 (5)0.636 (4)
C110.1615 (3)0.89560 (13)0.49351 (14)0.0310 (4)
H11A0.16540.96260.51150.037*
C120.2086 (2)0.81953 (12)0.55571 (10)0.0277 (3)
H12A0.24490.83630.61710.033*0.364 (4)
F1B0.0366 (5)0.9380 (2)0.3455 (2)0.0441 (10)0.364 (4)
C130.2046 (2)0.71958 (11)0.53113 (11)0.0227 (3)
H13A0.23690.67040.57530.027*
C140.0737 (3)0.55223 (14)0.31617 (11)0.0284 (4)
H14A0.01240.49700.32190.043*
H14B0.17710.53140.28110.043*
H14C0.00640.60680.28480.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0396 (7)0.0257 (6)0.0197 (5)0.0008 (5)0.0015 (5)0.0019 (4)
O20.0563 (9)0.0211 (6)0.0306 (6)0.0018 (6)0.0001 (6)0.0088 (5)
O30.0511 (9)0.0265 (6)0.0403 (7)0.0014 (6)0.0006 (6)0.0095 (5)
O40.0501 (9)0.0426 (8)0.0307 (7)0.0046 (7)0.0129 (6)0.0045 (6)
N10.0226 (6)0.0174 (6)0.0214 (6)0.0015 (5)0.0035 (5)0.0011 (5)
N20.0264 (7)0.0184 (6)0.0183 (6)0.0002 (5)0.0016 (5)0.0019 (4)
N30.0285 (7)0.0220 (6)0.0212 (6)0.0015 (5)0.0027 (5)0.0042 (5)
N40.0263 (7)0.0300 (7)0.0285 (7)0.0008 (6)0.0015 (6)0.0062 (6)
C10.0179 (6)0.0197 (6)0.0198 (6)0.0015 (5)0.0037 (5)0.0013 (5)
C20.0191 (7)0.0213 (7)0.0188 (6)0.0017 (5)0.0029 (5)0.0025 (5)
C30.0196 (7)0.0195 (6)0.0248 (7)0.0017 (5)0.0034 (5)0.0002 (5)
C40.0192 (7)0.0257 (7)0.0223 (7)0.0008 (6)0.0019 (5)0.0039 (6)
C50.0205 (7)0.0279 (8)0.0207 (7)0.0027 (6)0.0014 (5)0.0017 (5)
C60.0206 (7)0.0218 (7)0.0207 (7)0.0019 (5)0.0013 (5)0.0033 (5)
C70.0197 (7)0.0216 (7)0.0197 (6)0.0008 (5)0.0037 (5)0.0017 (5)
C80.0184 (7)0.0201 (7)0.0233 (7)0.0005 (5)0.0029 (5)0.0011 (5)
C90.0234 (7)0.0276 (8)0.0278 (8)0.0030 (6)0.0003 (6)0.0044 (6)
C100.0272 (8)0.0261 (8)0.0454 (10)0.0061 (7)0.0008 (7)0.0070 (7)
F1A0.0497 (11)0.0250 (8)0.0343 (9)0.0030 (7)0.0078 (8)0.0097 (6)
C110.0257 (8)0.0192 (7)0.0478 (10)0.0025 (6)0.0020 (7)0.0024 (7)
C120.0258 (8)0.0222 (7)0.0353 (9)0.0019 (6)0.0031 (7)0.0064 (6)
F1B0.059 (2)0.0236 (15)0.048 (2)0.0038 (14)0.0056 (16)0.0141 (13)
C130.0247 (7)0.0192 (7)0.0241 (7)0.0009 (6)0.0023 (6)0.0003 (5)
C140.0348 (9)0.0297 (8)0.0203 (7)0.0060 (7)0.0011 (6)0.0033 (6)
Geometric parameters (Å, º) top
O1—N31.2447 (18)C7—C81.485 (2)
O2—N31.2279 (18)C7—C141.501 (2)
O3—N41.229 (2)C8—C91.402 (2)
O4—N41.226 (2)C8—C131.403 (2)
N1—C71.293 (2)C9—C101.381 (3)
N1—N21.3716 (18)C9—H9A0.9300
N2—C11.357 (2)C10—F1B1.3322 (10)
N2—H1N20.89 (2)C10—C111.371 (3)
N3—C21.4478 (19)C10—H10A0.9300
N4—C41.461 (2)F1A—C121.3377 (10)
C1—C61.420 (2)C11—C121.377 (2)
C1—C21.424 (2)C11—H11A0.9300
C2—C31.395 (2)C12—C131.379 (2)
C3—C41.371 (2)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C4—C51.404 (2)C14—H14A0.9600
C5—C61.368 (2)C14—H14B0.9600
C5—H5A0.9300C14—H14C0.9600
C6—H6A0.9300
C7—N1—N2115.18 (13)C8—C7—C14121.53 (14)
C1—N2—N1120.07 (13)C9—C8—C13118.84 (15)
C1—N2—H1N2115.7 (16)C9—C8—C7121.61 (14)
N1—N2—H1N2124.1 (16)C13—C8—C7119.55 (13)
O2—N3—O1121.97 (14)C10—C9—C8118.75 (16)
O2—N3—C2118.85 (14)C10—C9—H9A120.6
O1—N3—C2119.18 (13)C8—C9—H9A120.6
O4—N4—O3123.64 (15)F1B—C10—C11117.6 (2)
O4—N4—C4117.97 (15)F1B—C10—C9118.2 (2)
O3—N4—C4118.39 (15)C11—C10—C9123.58 (15)
N2—C1—C6121.26 (14)C11—C10—H10A118.2
N2—C1—C2121.73 (13)C9—C10—H10A118.2
C6—C1—C2117.01 (13)C10—C11—C12116.59 (15)
C3—C2—C1121.42 (14)C10—C11—H11A121.7
C3—C2—N3115.98 (13)C12—C11—H11A121.7
C1—C2—N3122.59 (13)F1A—C12—C11116.40 (16)
C4—C3—C2118.96 (14)F1A—C12—C13120.49 (16)
C4—C3—H3A120.5C11—C12—C13123.03 (14)
C2—C3—H3A120.5C11—C12—H12A118.5
C3—C4—C5121.62 (14)C13—C12—H12A118.5
C3—C4—N4118.27 (14)C12—C13—C8119.20 (14)
C5—C4—N4120.11 (14)C12—C13—H13A120.4
C6—C5—C4119.53 (14)C8—C13—H13A120.4
C6—C5—H5A120.2C7—C14—H14A109.5
C4—C5—H5A120.2C7—C14—H14B109.5
C5—C6—C1121.44 (14)H14A—C14—H14B109.5
C5—C6—H6A119.3C7—C14—H14C109.5
C1—C6—H6A119.3H14A—C14—H14C109.5
N1—C7—C8115.24 (13)H14B—C14—H14C109.5
N1—C7—C14123.22 (14)
C7—N1—N2—C1176.16 (14)C4—C5—C6—C10.1 (2)
N1—N2—C1—C60.9 (2)N2—C1—C6—C5178.07 (14)
N1—N2—C1—C2178.42 (13)C2—C1—C6—C51.3 (2)
N2—C1—C2—C3178.00 (14)N2—N1—C7—C8178.27 (12)
C6—C1—C2—C31.4 (2)N2—N1—C7—C140.8 (2)
N2—C1—C2—N30.7 (2)N1—C7—C8—C9170.45 (14)
C6—C1—C2—N3179.90 (13)C14—C7—C8—C98.6 (2)
O2—N3—C2—C34.7 (2)N1—C7—C8—C138.4 (2)
O1—N3—C2—C3174.98 (14)C14—C7—C8—C13172.56 (15)
O2—N3—C2—C1176.52 (15)C13—C8—C9—C100.5 (2)
O1—N3—C2—C13.8 (2)C7—C8—C9—C10178.31 (15)
C1—C2—C3—C40.2 (2)C8—C9—C10—F1B171.0 (2)
N3—C2—C3—C4178.96 (13)C8—C9—C10—C110.1 (3)
C2—C3—C4—C51.2 (2)F1B—C10—C11—C12170.7 (2)
C2—C3—C4—N4178.77 (13)C9—C10—C11—C120.3 (3)
O4—N4—C4—C3171.96 (16)C10—C11—C12—F1A176.64 (18)
O3—N4—C4—C38.3 (2)C10—C11—C12—C130.1 (3)
O4—N4—C4—C58.1 (2)F1A—C12—C13—C8176.95 (17)
O3—N4—C4—C5171.62 (16)C11—C12—C13—C80.3 (3)
C3—C4—C5—C61.3 (2)C9—C8—C13—C120.6 (2)
N4—C4—C5—C6178.70 (14)C7—C8—C13—C12178.24 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.89 (2)1.90 (2)2.6038 (18)135 (2)
C9—H9A···O1i0.932.583.413 (2)150
C13—H13A···O4ii0.932.443.176 (2)137
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H11FN4O4
Mr318.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0165 (6), 13.3336 (11), 14.4498 (12)
β (°) 94.791 (2)
V3)1347.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.39 × 0.15 × 0.14
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.952, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15079, 3874, 3126
Rint0.054
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.155, 1.07
No. of reflections3874
No. of parameters223
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.59

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.89 (2)1.90 (2)2.6038 (18)135 (2)
C9—H9A···O1i0.932.583.413 (2)150
C13—H13A···O4ii0.932.443.176 (2)137
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

BN, TK and PJ thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors thank Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Fun, H.-K. (2011). Acta Cryst. E67, o3499–o3500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B. & Karalai, C. (2012). Acta Cryst. E68, o704–o705.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science CrossRef PubMed Google Scholar
First citationKrishnamoorthy, P., Sathyadevi, P., Senthikumar, K., Muthiah, T., Ramesh, R. & Dharmaraj, N. (2011). Inorg. Chem. Commun. 14, 1318–1322.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.  CAS Google Scholar
First citationNilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425–2433.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1644-o1645
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds