organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1631-o1632

5-Bromo-4-(3,4-dimeth­­oxy­phen­yl)thia­zol-2-amine

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 April 2012; accepted 30 April 2012; online 5 May 2012)

In the title compound, C11H11BrN2O2S, the thia­zole ring makes a dihedral angle of 53.16 (11)° with the adjacent benzene ring. The two meth­oxy groups are slightly twisted from the attached benzene ring with C—O—C—C torsion angles of −9.2 (3) and −5.5 (3)°. In the crystal, mol­ecules are linked by a pair of N—H⋯N hydrogen bonds into an inversion dimer with an R22(8) ring motif. The dimers are further connected by N—H⋯O hydrogen bonds into a tape along [-110].

Related literature

For applications of the thia­zole ring system, see: Hargrave et al. (1983[Hargrave, K. D., Hess, F. K. & Oliver, J. T. (1983). J. Med. Chem. 26, 1158-1163.]); Patt et al. (1992[Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem. 35, 2562-2572.]); Haviv et al. (1988[Haviv, F., Ratajczyk, J. D., DeNet, R. W., Kerdesky, F. A., Walters, R. L., Schmidt, S. P., Holms, J. H., Young, P. R. & Carter, G. W. (1988). J. Med. Chem. 31, 1719-1728.]); Jaen et al. (1990[Jaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzner, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311-317.]); Tsuji & Ishikawa (1994[Tsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601-1606.]); Bell et al. (1995[Bell, F. W., Cantrell, A. S., Högberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M. Jr, Noréen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, J., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X.-X. (1995). J. Med. Chem. 38, 4929-4936.]). For applications of amino­thia­zoles, see: Fink et al. (1999[Fink, B. E., Mortensen, D. S., Stauffer, S. R., Aron, Z. D. & Katzenellenbogen, J. A. (1999). Chem. Biol. 6, 205-219.]); Van Muijlwijk-Koezen et al. (2001[Van Muijlwijk-Koezen, J. E., Timmerman, H., Vollinga, R. C., Von Drabbe Kunzel, J. F., De Groote, M., Visser, S. & Ijzerman, A. P. (2001). J. Med. Chem. 44, 749-762.]); Metzger (1984[Metzger, J. V. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, p. 238. New York: Pergamon Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the preparation, see: Das et al. (2006[Das, J., Furch, J. A., Liu, C., Moquin, R. V., Lin, J., Spergel, S. H., Mclntyre, K. W., Shuster, D. J., O'Day, K. D., Penhallow, B., Hung, C.-Y., Doweyko, A. M., Kamath, A., Zhang, H., Marathe, P., Kanner, S. B., Lin, T.-A., Dodd, J. H., Barrish, J. C. & Wityak, J. (2006). Bioorg. Med. Chem. Lett. 16, 3706-3712.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11BrN2O2S

  • Mr = 315.19

  • Triclinic, [P \overline 1]

  • a = 7.4873 (2) Å

  • b = 8.0359 (2) Å

  • c = 10.6428 (3) Å

  • α = 86.571 (2)°

  • β = 77.633 (2)°

  • γ = 85.330 (2)°

  • V = 622.82 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.46 mm−1

  • T = 100 K

  • 0.45 × 0.20 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.305, Tmax = 0.737

  • 10861 measured reflections

  • 2121 independent reflections

  • 1888 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.071

  • S = 1.12

  • 2121 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯O1i 0.78 (3) 2.40 (3) 2.992 (3) 134 (3)
N2—H2N2⋯O2i 0.78 (3) 2.37 (3) 3.112 (3) 161 (3)
N2—H1N2⋯N1ii 0.81 (3) 2.20 (3) 2.998 (3) 168 (3)
Symmetry codes: (i) x-1, y+1, z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The thiazole ring system is a useful structural motif found in numerous biologically active molecules. This structure has found applications in drug development for the treatment of allergies (Hargrave et al., 1983), hypertension (Patt et al., 1992), inflammation (Haviv et al., 1988), schizophrenia (Jaen et al., 1990), bacterial (Tsuji & Ishikawa, 1994) and HIV infections (Bell et al., 1995). Aminothiazoles are known to be ligands of estrogen receptors (Fink et al., 1999) as well as a novel class of adenosine receptor antagonists (Van Muijlwijk-Koezen et al., 2001). Other analogues are used as fungicides, inhibiting in vivo growth of Xanthomonas, as an ingredient of herbicides or as schistosomicidal and anthelmintic drugs (Metzger, 1984).

In the title compound (Fig. 1), the thiazole ring (S1/N1/C7–C9) makes a dihedral angle of 53.16 (11)° with the adjacent benzene ring (C1–C6). The two methoxy groups (O1/C10 & O2/C11) are slightly twisted from the C1–C6 ring with torsion angles C10—O1—C3—C2 = -9.2 (3) and C11—O2—C4—C5 = -5.5 (3)°.

In the crystal packing (Fig. 2 & 3), the molecules are linked by intermolecular N2—H1N2···N1 hydrogen bonds into dimers with R22(8) ring motifs (Bernstein et al., 1995). The dimers are further connected by intermolecular N2—H2N2···O1 and N2—H2N2···O2 hydrogen bonds (Table 1) into infinite tapes along [110].

Related literature top

For applications of the thiazole ring system, see: Hargrave et al. (1983); Patt et al. (1992); Haviv et al. (1988); Jaen et al. (1990); Tsuji & Ishikawa (1994); Bell et al. (1995). For applications of aminothiazoles, see: Fink et al. (1999); Van Muijlwijk-Koezen et al. (2001); Metzger (1984). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the preparation, see: Das et al. (2006). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared from the reaction of 4-(3,4-dimethoxyphenyl)thiazol-2-amine (236 mg, 1 mmol) with bromine (161 mg, 1.1 mmol) in glacial acetic acid and heated at 80 °C for 1.5 h. Single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by the slow evaporation of the solvent at room temperature after several days (Das et al., 2006).

Refinement top

Atom H1N2 and H2N2 were located in a difference Fourier map and refined freely [N—H = 0.80 (3) and 0.78 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. Three outliers (-2 6 4), (5 -3 8) and (5 -2 9) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along [1 1 0].
5-Bromo-4-(3,4-dimethoxyphenyl)thiazol-2-amine top
Crystal data top
C11H11BrN2O2SZ = 2
Mr = 315.19F(000) = 316
Triclinic, P1Dx = 1.681 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4873 (2) ÅCell parameters from 7495 reflections
b = 8.0359 (2) Åθ = 2.6–35.5°
c = 10.6428 (3) ŵ = 3.46 mm1
α = 86.571 (2)°T = 100 K
β = 77.633 (2)°Plate, brown
γ = 85.330 (2)°0.45 × 0.20 × 0.09 mm
V = 622.82 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2121 independent reflections
Radiation source: fine-focus sealed tube1888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.305, Tmax = 0.737k = 99
10861 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.1359P]
where P = (Fo2 + 2Fc2)/3
2121 reflections(Δ/σ)max = 0.002
164 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C11H11BrN2O2Sγ = 85.330 (2)°
Mr = 315.19V = 622.82 (3) Å3
Triclinic, P1Z = 2
a = 7.4873 (2) ÅMo Kα radiation
b = 8.0359 (2) ŵ = 3.46 mm1
c = 10.6428 (3) ÅT = 100 K
α = 86.571 (2)°0.45 × 0.20 × 0.09 mm
β = 77.633 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2121 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1888 reflections with I > 2σ(I)
Tmin = 0.305, Tmax = 0.737Rint = 0.030
10861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.17 e Å3
2121 reflectionsΔρmin = 0.73 e Å3
164 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16418 (3)0.27703 (3)1.04837 (2)0.02360 (12)
S10.30599 (8)0.51061 (8)0.84026 (6)0.01865 (17)
O10.6319 (2)0.1031 (2)0.74403 (16)0.0203 (4)
O20.4088 (2)0.1521 (2)0.60126 (16)0.0213 (4)
N10.0368 (3)0.4074 (3)0.6600 (2)0.0187 (5)
N20.2487 (4)0.5970 (3)0.5852 (2)0.0237 (5)
C10.2811 (3)0.2379 (3)0.8495 (2)0.0195 (6)
H1A0.25390.32460.90900.023*
C20.4415 (3)0.1345 (3)0.8433 (2)0.0193 (6)
H2A0.52410.15240.89680.023*
C30.4794 (3)0.0060 (3)0.7588 (2)0.0168 (5)
C40.3576 (3)0.0193 (3)0.6795 (2)0.0162 (5)
C50.2018 (3)0.0867 (3)0.6835 (2)0.0166 (5)
H5A0.12180.07190.62740.020*
C60.1613 (3)0.2164 (3)0.7706 (2)0.0169 (5)
C70.0059 (3)0.3294 (3)0.7743 (2)0.0167 (5)
C80.1867 (3)0.5072 (3)0.6792 (2)0.0180 (6)
C90.1366 (3)0.3686 (3)0.8796 (2)0.0174 (5)
C100.7724 (3)0.0657 (3)0.8075 (2)0.0233 (6)
H10A0.87990.14390.78210.035*
H10B0.72740.07620.90100.035*
H10C0.80650.04880.78310.035*
C110.2828 (4)0.1928 (4)0.5250 (3)0.0260 (6)
H11A0.33590.28770.47230.039*
H11B0.25890.09610.46890.039*
H11C0.16750.22250.58190.039*
H2N20.324 (4)0.669 (4)0.602 (3)0.028 (9)*
H1N20.182 (4)0.606 (4)0.515 (3)0.033 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02354 (18)0.02661 (19)0.01783 (16)0.00291 (11)0.00083 (11)0.00253 (12)
S10.0173 (3)0.0182 (4)0.0182 (3)0.0037 (3)0.0003 (3)0.0012 (3)
O10.0161 (9)0.0188 (10)0.0266 (9)0.0041 (7)0.0071 (7)0.0039 (8)
O20.0207 (9)0.0200 (10)0.0238 (9)0.0045 (8)0.0060 (8)0.0086 (8)
N10.0190 (11)0.0185 (12)0.0178 (10)0.0028 (9)0.0033 (9)0.0020 (9)
N20.0244 (14)0.0241 (15)0.0187 (12)0.0125 (11)0.0005 (10)0.0019 (11)
C10.0203 (14)0.0167 (14)0.0208 (12)0.0003 (11)0.0019 (10)0.0048 (11)
C20.0187 (13)0.0199 (15)0.0202 (13)0.0014 (11)0.0057 (10)0.0008 (11)
C30.0142 (13)0.0132 (13)0.0209 (12)0.0013 (10)0.0003 (10)0.0021 (10)
C40.0178 (13)0.0135 (14)0.0152 (11)0.0001 (10)0.0006 (10)0.0003 (10)
C50.0172 (13)0.0173 (14)0.0149 (11)0.0009 (10)0.0029 (10)0.0007 (10)
C60.0188 (13)0.0137 (13)0.0162 (11)0.0003 (10)0.0001 (10)0.0030 (10)
C70.0175 (13)0.0136 (13)0.0190 (12)0.0011 (10)0.0039 (10)0.0008 (11)
C80.0193 (14)0.0170 (14)0.0171 (12)0.0013 (11)0.0030 (10)0.0024 (11)
C90.0192 (13)0.0136 (14)0.0183 (12)0.0021 (10)0.0035 (10)0.0017 (11)
C100.0140 (13)0.0262 (16)0.0296 (14)0.0026 (11)0.0050 (11)0.0034 (12)
C110.0263 (15)0.0265 (16)0.0270 (14)0.0004 (12)0.0080 (12)0.0097 (12)
Geometric parameters (Å, º) top
Br1—C91.876 (2)C2—C31.382 (3)
S1—C91.738 (3)C2—H2A0.9500
S1—C81.755 (2)C3—C41.402 (3)
O1—C31.369 (3)C4—C51.382 (4)
O1—C101.426 (3)C5—C61.407 (3)
O2—C41.372 (3)C5—H5A0.9500
O2—C111.437 (3)C6—C71.480 (4)
N1—C81.312 (3)C7—C91.355 (3)
N1—C71.390 (3)C10—H10A0.9800
N2—C81.340 (4)C10—H10B0.9800
N2—H2N20.78 (3)C10—H10C0.9800
N2—H1N20.80 (3)C11—H11A0.9800
C1—C61.380 (3)C11—H11B0.9800
C1—C21.395 (4)C11—H11C0.9800
C1—H1A0.9500
C9—S1—C888.28 (12)C1—C6—C7121.1 (2)
C3—O1—C10116.65 (19)C5—C6—C7119.8 (2)
C4—O2—C11117.3 (2)C9—C7—N1114.3 (2)
C8—N1—C7111.7 (2)C9—C7—C6126.9 (2)
C8—N2—H2N2120 (2)N1—C7—C6118.7 (2)
C8—N2—H1N2119 (2)N1—C8—N2123.9 (2)
H2N2—N2—H1N2116 (3)N1—C8—S1114.24 (19)
C6—C1—C2121.1 (2)N2—C8—S1121.9 (2)
C6—C1—H1A119.4C7—C9—S1111.44 (19)
C2—C1—H1A119.4C7—C9—Br1128.9 (2)
C3—C2—C1119.6 (2)S1—C9—Br1119.41 (13)
C3—C2—H2A120.2O1—C10—H10A109.5
C1—C2—H2A120.2O1—C10—H10B109.5
O1—C3—C2124.9 (2)H10A—C10—H10B109.5
O1—C3—C4115.1 (2)O1—C10—H10C109.5
C2—C3—C4120.0 (2)H10A—C10—H10C109.5
O2—C4—C5125.4 (2)H10B—C10—H10C109.5
O2—C4—C3114.6 (2)O2—C11—H11A109.5
C5—C4—C3120.1 (2)O2—C11—H11B109.5
C4—C5—C6120.1 (2)H11A—C11—H11B109.5
C4—C5—H5A119.9O2—C11—H11C109.5
C6—C5—H5A119.9H11A—C11—H11C109.5
C1—C6—C5119.1 (2)H11B—C11—H11C109.5
C6—C1—C2—C31.4 (4)C8—N1—C7—C91.5 (3)
C10—O1—C3—C29.2 (3)C8—N1—C7—C6178.0 (2)
C10—O1—C3—C4170.4 (2)C1—C6—C7—C952.8 (4)
C1—C2—C3—O1179.9 (2)C5—C6—C7—C9128.5 (3)
C1—C2—C3—C40.3 (4)C1—C6—C7—N1126.6 (2)
C11—O2—C4—C55.5 (3)C5—C6—C7—N152.1 (3)
C11—O2—C4—C3175.2 (2)C7—N1—C8—N2179.6 (2)
O1—C3—C4—O21.3 (3)C7—N1—C8—S11.3 (3)
C2—C3—C4—O2179.1 (2)C9—S1—C8—N10.6 (2)
O1—C3—C4—C5178.0 (2)C9—S1—C8—N2179.0 (2)
C2—C3—C4—C51.6 (4)N1—C7—C9—S11.0 (3)
O2—C4—C5—C6178.4 (2)C6—C7—C9—S1178.36 (19)
C3—C4—C5—C62.4 (3)N1—C7—C9—Br1172.86 (17)
C2—C1—C6—C50.6 (4)C6—C7—C9—Br17.7 (4)
C2—C1—C6—C7178.1 (2)C8—S1—C9—C70.28 (19)
C4—C5—C6—C11.3 (3)C8—S1—C9—Br1174.28 (14)
C4—C5—C6—C7180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O1i0.78 (3)2.40 (3)2.992 (3)134 (3)
N2—H2N2···O2i0.78 (3)2.37 (3)3.112 (3)161 (3)
N2—H1N2···N1ii0.81 (3)2.20 (3)2.998 (3)168 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H11BrN2O2S
Mr315.19
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4873 (2), 8.0359 (2), 10.6428 (3)
α, β, γ (°)86.571 (2), 77.633 (2), 85.330 (2)
V3)622.82 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.46
Crystal size (mm)0.45 × 0.20 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.305, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
10861, 2121, 1888
Rint0.030
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.071, 1.12
No. of reflections2121
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.17, 0.73

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O1i0.78 (3)2.40 (3)2.992 (3)134 (3)
N2—H2N2···O2i0.78 (3)2.37 (3)3.112 (3)161 (3)
N2—H1N2···N1ii0.81 (3)2.20 (3)2.998 (3)168 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HAG thanks the Deanship of Scientific Research and Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationBell, F. W., Cantrell, A. S., Högberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M. Jr, Noréen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, J., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X.-X. (1995). J. Med. Chem. 38, 4929–4936.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDas, J., Furch, J. A., Liu, C., Moquin, R. V., Lin, J., Spergel, S. H., Mclntyre, K. W., Shuster, D. J., O'Day, K. D., Penhallow, B., Hung, C.-Y., Doweyko, A. M., Kamath, A., Zhang, H., Marathe, P., Kanner, S. B., Lin, T.-A., Dodd, J. H., Barrish, J. C. & Wityak, J. (2006). Bioorg. Med. Chem. Lett. 16, 3706–3712.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFink, B. E., Mortensen, D. S., Stauffer, S. R., Aron, Z. D. & Katzenellenbogen, J. A. (1999). Chem. Biol. 6, 205–219.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHargrave, K. D., Hess, F. K. & Oliver, J. T. (1983). J. Med. Chem. 26, 1158–1163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHaviv, F., Ratajczyk, J. D., DeNet, R. W., Kerdesky, F. A., Walters, R. L., Schmidt, S. P., Holms, J. H., Young, P. R. & Carter, G. W. (1988). J. Med. Chem. 31, 1719–1728.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzner, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311–317.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMetzger, J. V. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, p. 238. New York: Pergamon Press.  Google Scholar
First citationPatt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem. 35, 2562–2572.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601–1606.  CrossRef CAS Web of Science Google Scholar
First citationVan Muijlwijk-Koezen, J. E., Timmerman, H., Vollinga, R. C., Von Drabbe Kunzel, J. F., De Groote, M., Visser, S. & Ijzerman, A. P. (2001). J. Med. Chem. 44, 749–762.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1631-o1632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds