organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)-2-(phenyl­sulfon­yl)ethanone

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 May 2012; accepted 2 May 2012; online 5 May 2012)

In the title compound, C14H11FO3S, the unit comprising the ethanone and 4-fluoro­phenyl groups is essentially planar, with an r.m.s. deviation of 0.0084 (2) Å for the ten non-H atoms, and it makes a dihedral angle of 37.31 (10)° with the phenyl ring. In the crystal, mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds into inversion dimers with R22(16) graph-set motifs. The dimers are stacked along the b axis through further C—H⋯O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For background to the chemistry of aryl­sulphones, see: Abdel-Aziz et al. (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-3997.], 2010[Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152-159.]); Grandison et al. (2002[Grandison, A. S., Goulas, A. K. & Rastall, R. A. (2002). Songklanakarin J. Sci. Technol. 24 (Suppl.), 915-928.]); Silvestri et al. (2000[Silvestri, R., Artico, M., De Martino, G., Novellino, E., Greco, G., Lavecchia, A., Massa, S., Loi, A. G., Doratiotto, S. & La Colla, P. (2000). Bioorg. Med. Chem. 8, 2305-2308.]); Stephens et al. (2001[Stephens, C. E., Felder, T. M., Sowell, J. W., Andrei, G., Balz, J., Snoeck, R. & De Clerq, E. (2001). Bioorg. Med. Chem. 9, 1123-1132.]); Xiang et al. (2007[Xiang, J., Ipek, M., Suri, V., Tam, M., Xing, Y., Huang, N., Zhang, Y., Tobin, J., Mansour, T. S. & McKew, J. (2007). Bioorg. Med. Chem. 15, 4327-4664.]). For related structures, see: Abdel-Aziz et al. (2011[Abdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2675.], 2012[Abdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Fun, H.-K. & Chia, T. S. (2012). Acta Cryst. E68, o1033.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11FO3S

  • Mr = 278.30

  • Monoclinic, P 21 /c

  • a = 13.7046 (3) Å

  • b = 5.3216 (1) Å

  • c = 20.4401 (5) Å

  • β = 119.612 (2)°

  • V = 1296.01 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.36 mm−1

  • T = 296 K

  • 0.58 × 0.23 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.341, Tmax = 0.852

  • 8880 measured reflections

  • 2393 independent reflections

  • 2090 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.07

  • 2393 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O3i 0.97 2.23 3.183 (2) 168
C5—H5A⋯O2ii 0.93 2.57 3.218 (3) 127
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Arylsulphones are an interesting class of non-nucleoside antiviral agents. A large number of them have been also shown various interesting biological activities (Abdel-Aziz et al., 2009, 2010; Silvestri et al., 2000; Stephens et al., 2001) and found application in membrane technology for nanofiltration (Grandison et al., 2002). During the course of our research on the medicinal chemistry of arylsulphones, the title compound(I) was synthesized and studied for its biological activity. Herein the crystal structure of (I) was reported.

The title molecule has a fold structure as indicated by the dihedral angle between the 4-fluorophenyl and phenyl rings being 36.98 (12)° (Fig. 1). The ethanone unit [C1/C2/O1] lies on the same plane with the 4-fluorophenyl ring with an r.m.s. deviation of 0.0084 (2) Å for the ten non-H atoms (C1–C8/O1/F1) and the dihedral angle between the ethanone plane and the 4-fluorophenyl ring being 1.2 (2)°. The environment of S atom is a distorted tetrahedral geometry [angles around S atom are 105.67 (8)–118.24 (9)°] being surrounded by two O atoms, one C atom of the ethanone unit and one C atom of the benzene ring. The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structures (Abdel-Aziz et al., 2011, 2012).

In the crystal packing (Fig. 2), the molecules are linked by pairs of weak C···H···Osulfonyl interactions (Table 1) into inversion dimers with R22(16) graph-set motifs (Bernstein et al., 1995) and these dimers are arranged into layers parallel to the ac plane and stacked along the b axis.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to the chemistry of arylsulphones, see: Abdel-Aziz et al. (2009, 2010); Grandison et al. (2002); Silvestri et al. (2000); Stephens et al. (2001); Xiang et al. (2007). For related structures, see: Abdel-Aziz et al. (2011, 2012).

Experimental top

The title compound was prepared according to the reported method (Xiang et al., 2007). Colorless plate-shaped single crystals suitable for an X-ray structural analysis were obtained by slow evaporation from an ethanol solution at room temperature.

Refinement top

H atoms were placed in calculated positions with d(C—H) = 0.93 for aromatic and 0.97 Å for CH2 atoms. The Uiso(H) values were constrained to be 1.2Ueq of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the b axis, showing molecular layers parallel to the ac plane. The C—H···O hydrogen bonds are shown by dashed lines.
1-(4-Fluorophenyl)-2-(phenylsulfonyl)ethanone top
Crystal data top
C14H11FO3SF(000) = 576
Mr = 278.30Dx = 1.426 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2393 reflections
a = 13.7046 (3) Åθ = 3.7–71.2°
b = 5.3216 (1) ŵ = 2.36 mm1
c = 20.4401 (5) ÅT = 296 K
β = 119.612 (2)°Plate, colorless
V = 1296.01 (6) Å30.58 × 0.23 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2393 independent reflections
Radiation source: fine-focus sealed tube2090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 71.2°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.341, Tmax = 0.852k = 56
8880 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.2892P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2393 reflectionsΔρmax = 0.22 e Å3
173 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (5)
Crystal data top
C14H11FO3SV = 1296.01 (6) Å3
Mr = 278.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.7046 (3) ŵ = 2.36 mm1
b = 5.3216 (1) ÅT = 296 K
c = 20.4401 (5) Å0.58 × 0.23 × 0.07 mm
β = 119.612 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2393 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2090 reflections with I > 2σ(I)
Tmin = 0.341, Tmax = 0.852Rint = 0.033
8880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2393 reflectionsΔρmin = 0.30 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55567 (3)0.70852 (8)0.61500 (2)0.04632 (18)
F10.96706 (13)0.1120 (4)0.55007 (10)0.1107 (6)
O10.81880 (12)0.9811 (3)0.68962 (8)0.0662 (4)
O20.45075 (10)0.8367 (3)0.58825 (8)0.0616 (4)
O30.55394 (12)0.4560 (2)0.58997 (8)0.0603 (4)
C10.63784 (15)0.8990 (3)0.58896 (10)0.0492 (4)
H1A0.61330.87000.53620.059*
H1B0.62361.07410.59440.059*
C20.76418 (15)0.8516 (4)0.63472 (9)0.0492 (4)
C30.81547 (14)0.6528 (4)0.61084 (9)0.0488 (4)
C40.75317 (15)0.5065 (4)0.54707 (10)0.0540 (4)
H4A0.67620.53240.51780.065*
C50.80438 (17)0.3233 (4)0.52674 (11)0.0630 (5)
H5A0.76290.22420.48440.076*
C60.91764 (19)0.2912 (5)0.57045 (13)0.0716 (6)
C70.98184 (18)0.4289 (6)0.63456 (13)0.0798 (7)
H7A1.05850.39910.66380.096*
C80.93098 (16)0.6100 (5)0.65444 (12)0.0660 (6)
H8A0.97350.70590.69740.079*
C90.62748 (14)0.7076 (3)0.71439 (10)0.0470 (4)
C100.70719 (16)0.5235 (4)0.75248 (11)0.0560 (4)
H10A0.72220.40070.72630.067*
C110.76409 (19)0.5262 (5)0.83057 (12)0.0691 (6)
H11A0.81820.40490.85730.083*
C120.7406 (2)0.7079 (5)0.86849 (12)0.0718 (6)
H12A0.77910.70890.92080.086*
C130.6606 (2)0.8885 (5)0.82995 (13)0.0733 (6)
H13A0.64521.00990.85630.088*
C140.60266 (17)0.8904 (4)0.75166 (12)0.0596 (5)
H14A0.54851.01190.72520.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0442 (3)0.0421 (3)0.0460 (3)0.00262 (16)0.01715 (19)0.00338 (15)
F10.0781 (9)0.1412 (15)0.1014 (11)0.0380 (9)0.0356 (8)0.0343 (10)
O10.0622 (8)0.0691 (10)0.0584 (8)0.0055 (7)0.0229 (7)0.0153 (7)
O20.0431 (6)0.0673 (9)0.0636 (8)0.0067 (6)0.0181 (6)0.0023 (6)
O30.0713 (8)0.0437 (8)0.0575 (8)0.0013 (6)0.0253 (6)0.0084 (6)
C10.0533 (9)0.0428 (10)0.0480 (9)0.0091 (7)0.0222 (7)0.0055 (7)
C20.0498 (9)0.0508 (11)0.0437 (9)0.0009 (8)0.0207 (7)0.0027 (7)
C30.0446 (8)0.0566 (11)0.0415 (8)0.0032 (7)0.0184 (7)0.0025 (7)
C40.0449 (8)0.0656 (12)0.0445 (9)0.0057 (8)0.0168 (7)0.0008 (8)
C50.0577 (11)0.0790 (15)0.0482 (10)0.0086 (10)0.0229 (8)0.0076 (9)
C60.0606 (11)0.0879 (17)0.0655 (13)0.0192 (11)0.0305 (10)0.0078 (11)
C70.0468 (10)0.109 (2)0.0684 (13)0.0185 (11)0.0168 (9)0.0101 (13)
C80.0478 (10)0.0837 (16)0.0527 (10)0.0038 (10)0.0144 (8)0.0103 (10)
C90.0468 (8)0.0465 (10)0.0464 (9)0.0037 (7)0.0221 (7)0.0027 (7)
C100.0611 (10)0.0485 (11)0.0540 (10)0.0013 (8)0.0248 (8)0.0029 (8)
C110.0695 (12)0.0637 (14)0.0588 (12)0.0041 (10)0.0200 (10)0.0138 (10)
C120.0808 (15)0.0851 (17)0.0468 (10)0.0192 (12)0.0294 (10)0.0010 (10)
C130.0826 (15)0.0838 (17)0.0647 (13)0.0155 (13)0.0449 (12)0.0212 (12)
C140.0591 (10)0.0609 (13)0.0611 (11)0.0017 (9)0.0314 (9)0.0102 (9)
Geometric parameters (Å, º) top
S1—O21.4333 (13)C6—C71.374 (3)
S1—O31.4342 (14)C7—C81.364 (3)
S1—C91.7664 (17)C7—H7A0.9300
S1—C11.7807 (19)C8—H8A0.9300
F1—C61.349 (3)C9—C141.378 (3)
O1—C21.210 (2)C9—C101.385 (3)
C1—C21.528 (2)C10—C111.388 (3)
C1—H1A0.9700C10—H10A0.9300
C1—H1B0.9700C11—C121.374 (4)
C2—C31.480 (3)C11—H11A0.9300
C3—C41.391 (3)C12—C131.376 (4)
C3—C81.399 (3)C12—H12A0.9300
C4—C51.380 (3)C13—C141.391 (3)
C4—H4A0.9300C13—H13A0.9300
C5—C61.366 (3)C14—H14A0.9300
C5—H5A0.9300
O2—S1—O3118.24 (9)C5—C6—C7122.8 (2)
O2—S1—C9108.90 (9)C8—C7—C6118.70 (19)
O3—S1—C9108.02 (8)C8—C7—H7A120.7
O2—S1—C1106.18 (9)C6—C7—H7A120.7
O3—S1—C1109.15 (9)C7—C8—C3120.62 (19)
C9—S1—C1105.67 (8)C7—C8—H8A119.7
C2—C1—S1114.57 (12)C3—C8—H8A119.7
C2—C1—H1A108.6C14—C9—C10122.02 (18)
S1—C1—H1A108.6C14—C9—S1118.98 (15)
C2—C1—H1B108.6C10—C9—S1119.00 (14)
S1—C1—H1B108.6C9—C10—C11118.5 (2)
H1A—C1—H1B107.6C9—C10—H10A120.7
O1—C2—C3122.41 (16)C11—C10—H10A120.7
O1—C2—C1117.92 (17)C12—C11—C10120.1 (2)
C3—C2—C1119.67 (15)C12—C11—H11A120.0
C4—C3—C8118.88 (18)C10—C11—H11A120.0
C4—C3—C2122.52 (16)C11—C12—C13120.8 (2)
C8—C3—C2118.59 (17)C11—C12—H12A119.6
C5—C4—C3120.65 (17)C13—C12—H12A119.6
C5—C4—H4A119.7C12—C13—C14120.3 (2)
C3—C4—H4A119.7C12—C13—H13A119.9
C6—C5—C4118.29 (19)C14—C13—H13A119.9
C6—C5—H5A120.9C9—C14—C13118.3 (2)
C4—C5—H5A120.9C9—C14—H14A120.8
F1—C6—C5117.9 (2)C13—C14—H14A120.8
F1—C6—C7119.2 (2)
O2—S1—C1—C2159.03 (13)C4—C3—C8—C70.4 (3)
O3—S1—C1—C272.49 (15)C2—C3—C8—C7180.0 (2)
C9—S1—C1—C243.46 (15)O2—S1—C9—C1423.82 (18)
S1—C1—C2—O193.21 (19)O3—S1—C9—C14153.41 (16)
S1—C1—C2—C387.07 (18)C1—S1—C9—C1489.87 (16)
O1—C2—C3—C4178.92 (19)O2—S1—C9—C10156.30 (15)
C1—C2—C3—C40.8 (3)O3—S1—C9—C1026.71 (18)
O1—C2—C3—C81.5 (3)C1—S1—C9—C1090.01 (16)
C1—C2—C3—C8178.84 (18)C14—C9—C10—C110.6 (3)
C8—C3—C4—C50.5 (3)S1—C9—C10—C11179.24 (15)
C2—C3—C4—C5179.91 (18)C9—C10—C11—C120.3 (3)
C3—C4—C5—C60.5 (3)C10—C11—C12—C130.2 (4)
C4—C5—C6—F1179.9 (2)C11—C12—C13—C140.4 (4)
C4—C5—C6—C71.7 (4)C10—C9—C14—C130.4 (3)
F1—C6—C7—C8179.8 (3)S1—C9—C14—C13179.46 (16)
C5—C6—C7—C81.8 (4)C12—C13—C14—C90.1 (3)
C6—C7—C8—C30.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.972.233.183 (2)168
C5—H5A···O2ii0.932.573.218 (3)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H11FO3S
Mr278.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.7046 (3), 5.3216 (1), 20.4401 (5)
β (°) 119.612 (2)
V3)1296.01 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.36
Crystal size (mm)0.58 × 0.23 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.341, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
8880, 2393, 2090
Rint0.033
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.07
No. of reflections2393
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.972.233.183 (2)168
C5—H5A···O2ii0.932.573.218 (3)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University, Riyadh, Saudia Arabia. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.  Google Scholar
First citationAbdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Fun, H.-K. & Chia, T. S. (2012). Acta Cryst. E68, o1033.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–3997.  Google Scholar
First citationAbdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2675.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrandison, A. S., Goulas, A. K. & Rastall, R. A. (2002). Songklanakarin J. Sci. Technol. 24 (Suppl.), 915–928.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvestri, R., Artico, M., De Martino, G., Novellino, E., Greco, G., Lavecchia, A., Massa, S., Loi, A. G., Doratiotto, S. & La Colla, P. (2000). Bioorg. Med. Chem. 8, 2305–2308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephens, C. E., Felder, T. M., Sowell, J. W., Andrei, G., Balz, J., Snoeck, R. & De Clerq, E. (2001). Bioorg. Med. Chem. 9, 1123–1132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiang, J., Ipek, M., Suri, V., Tam, M., Xing, Y., Huang, N., Zhang, Y., Tobin, J., Mansour, T. S. & McKew, J. (2007). Bioorg. Med. Chem. 15, 4327–4664.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds