organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1712-o1713

(E)-3-Di­methyl­amino-1-(2,5-di­methyl­thio­phen-3-yl)prop-2-en-1-one

aMedicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 May 2012; accepted 9 May 2012; online 12 May 2012)

In the title compound, C11H15NOS, the 3-(dimethyl­amino)­prop-2-en-1-one unit is approximately planar [maximum deviation = 0.0975 (14) Å] and its mean plane of seven non-H atoms makes a dihedral angle of 6.96 (10)° with the thio­phene ring. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into inversion dimers with R22(14) ring motifs. The dimers are stacked along the c axis through C—H⋯π inter­actions. The two methyl groups, attached to the thio­phene ring and the amino N atom, are each disordered over two orientations, with site-occupancy ratios of 0.59 (4):0.41 (4) and 0.74 (4):0.26 (4), respectively.

Related literature

For background to and the biological activity of thio­phene derivatives, see: Ghorab et al. (2006[Ghorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & Galal, M. (2006). Arzneim. Forsch. Drug. Res. 56, 553-560.]); Al-Said et al. (2011[Al-Said, M. S., Bashandy, M. S., Alqasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137-141.]); Shaaban et al. (2010[Shaaban, M. A., Ghorab, M. M., Heiba, H. I., Kamel, M. M., Zaher, N. H. & Mostafa, M. I. (2010). Arch. Pharm. Chem. Life Sci. 343, 404-410.]); Krantz et al. (1990[Krantz, A., Spencer, R. W., Tam, T. F., Liak, T. J., Copp, L. J., Thomas, E. M. & Rafferty, S. P. (1990). J. Med. Chem. 33, 464-479.]); Kikugawa & Ichino (1973[Kikugawa, K. & Ichino, M. (1973). Chem. Pharm. Bull. 21, 1151-1155.]); Gogte et al. (1967[Gogte, V. N., Shah, L. G., Tilak, B. D., Gadekar, K. N. & Sahasrabudhe, M. B. (1967). Tetrahedron, 23, 2437-2441.]); Medower et al. (2008[Medower, C., Wen, L. & Johnson, W. W. (2008). Chem. Res. Toxicol. 21, 1570-1577.]); Ghorab et al. (1998[Ghorab, M. M., Nassar, O. M. & Hassan, A. Y. (1998). Phosphorus Sulfur Silicon Relat. Elem. 134, 57-76.]); Hassan et al. (1998[Hassan, A. Y., Ghorab, M. M. & Nassar, O. M. (1998). Phosphorus Sulfur Silicon Relat. Elem. 134, 77-86.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NOS

  • Mr = 209.30

  • Triclinic, [P \overline 1]

  • a = 5.9114 (2) Å

  • b = 7.5424 (2) Å

  • c = 13.9940 (4) Å

  • α = 81.274 (2)°

  • β = 88.828 (3)°

  • γ = 69.119 (3)°

  • V = 575.83 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.24 mm−1

  • T = 296 K

  • 0.82 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.260, Tmax = 0.859

  • 7188 measured reflections

  • 1897 independent reflections

  • 1650 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.08

  • 1897 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.96 2.46 3.410 (3) 172
C5—H5BCg1ii 0.96 2.77 3.641 (3) 152
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of a program designed to investigate the biological activity of tricyclic and tetracyclic heterocyclic systems containing a thiophene ring as the central nucleus (Ghorab et al., 2006), recently we have put forward a convenient way to synthesize thiophene derivatives as anticancer agents (Al-Said et al., 2011; Shaaban et al., 2010). A survey of the literature showed that thiophene derivatives possess antihypertensive action (Krantz et al., 1990), platelet aggregation inhibition (Kikugawa & Ichino, 1973) and antineoplastic activities (Gogte et al., 1967; Medower et al., 2008). In addition, several nitrogen, oxygen and sulfur-containing heterocyclic compounds incorporating thiophene residues were found to possess interesting biological properties (Ghorab et al., 1998; Hassan et al., 1998). In continuation of our work on the synthesis of a novel thiophene derivative which might show significant anticancer activity, the title compound was prepared and its crystal structure is now reported.

The molecular structure of the title compound is shown in Fig. 1. The mean plane of dimethylthiophene ring [S1/C1–C6; maximum deviation = 0.0180 (12) Å at atom C6] forms a dihedral angle of 6.63 (12)° with the mean plane of the rest non-H atoms [O1/N1/C7–C11; maximum deviation = 0.0975 (14) Å at atom O1]. In the molecule, the hydrogen atoms attached to atoms C5 and C11 are each disordered over two positions with site-occupancy ratios of (H5A, H5B, H5C):(H5X, H5Y, H5Z) = 0.59 (4):0.41 (4) and (H11A, H11B, H11C):(H11X, H11Y, H11Z) = 0.74 (4):0.26 (4), respectively.

In the crystal (Fig. 2), molecules are linked by pairs of intermolecular C10—H10A···O1 hydrogen bonds into inversion dimers with an R22(14) ring motif (Bernstein et al., 1995) and are further stacked parallel to the a axis. The crystal packing is further stabilized by C—H···π interaction (Table 1), involving Cg1 which is the centroid of S1/C1–C4 ring.

Related literature top

For background to and the biological activity of thiophene derivatives, see: Ghorab et al. (2006); Al-Said et al. (2011); Shaaban et al. (2010); Krantz et al. (1990); Kikugawa & Ichino (1973); Gogte et al. (1967); Medower et al. (2008); Ghorab et al. (1998); Hassan et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 1-(2,5-dimethylthiophen-3-yl)ethanone (1.54 g, 0.01 mole) and dimethylformamide-dimethylacetal (1.19 g, 0.01 mole) in dry N,N-dimethylformamide (20 ml) was heated under reflux for 5 h. The reaction mixture was cooled and poured into ice water. The solid obtained was then recrystallized from ethanol to give the title compound. Single crystals suitable for X-ray structural analysis were obtained by slow evaporation from an N,N-dimethylformamide solution at room temperature.

Refinement top

The major parts of disordered H atoms attached to atoms C5 and C11 [(H5A, H5B, H5C) and (H11A, H11B, H11C)] were positioned geometrically, whereas the corresponding minor parts, (H5X, H5Y, H5Z) and (H11X, H11Y, H11Z) were located in a difference Fourier map. A rotating group model was used for both major and minor parts of disorders and refined using a riding model with Uiso(H) = 1.5Ueq(C) (C—H distance = 0.96 Å). The refined site-occupancy ratios are (H5A, H5B, H5C):(H5X, H5Y, H5Z) = 0.59 (4):0.41 (4) and (H11A, H11B, H11C):(H11X, H11Y, H11Z) = 0.74 (4):0.26 (4). The remaining H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined with Uiso(H) = 1.2 or 1.5Ueq(C). Rotating group model was also applied to the other methyl groups in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the b axis. The dashed lines represent the hydrogen bonds. For clarity sake, H atoms not involved in hydrogen bonding have been omitted.
(E)-3-Dimethylamino-1-(2,5-dimethylthiophen-3-yl)prop-2-en-1-one top
Crystal data top
C11H15NOSZ = 2
Mr = 209.30F(000) = 224
Triclinic, P1Dx = 1.207 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 5.9114 (2) ÅCell parameters from 967 reflections
b = 7.5424 (2) Åθ = 3.2–67.4°
c = 13.9940 (4) ŵ = 2.24 mm1
α = 81.274 (2)°T = 296 K
β = 88.828 (3)°Plate, pink
γ = 69.119 (3)°0.82 × 0.15 × 0.07 mm
V = 575.83 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1897 independent reflections
Radiation source: fine-focus sealed tube1650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 65.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 65
Tmin = 0.260, Tmax = 0.859k = 88
7188 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1016P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1897 reflectionsΔρmax = 0.16 e Å3
134 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C11H15NOSγ = 69.119 (3)°
Mr = 209.30V = 575.83 (3) Å3
Triclinic, P1Z = 2
a = 5.9114 (2) ÅCu Kα radiation
b = 7.5424 (2) ŵ = 2.24 mm1
c = 13.9940 (4) ÅT = 296 K
α = 81.274 (2)°0.82 × 0.15 × 0.07 mm
β = 88.828 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1897 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1650 reflections with I > 2σ(I)
Tmin = 0.260, Tmax = 0.859Rint = 0.034
7188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
1897 reflectionsΔρmin = 0.18 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.02985 (11)0.64848 (8)0.08507 (4)0.0778 (3)
O10.0467 (3)0.8400 (2)0.37669 (10)0.0842 (5)
N10.3675 (3)1.2353 (2)0.39674 (11)0.0645 (4)
C10.0007 (3)0.7081 (3)0.19944 (13)0.0608 (5)
C20.1315 (3)0.8191 (3)0.21208 (12)0.0572 (4)
C30.2590 (4)0.8516 (3)0.12684 (14)0.0665 (5)
H3A0.35790.92440.12320.080*
C40.2241 (4)0.7685 (3)0.05249 (15)0.0722 (5)
C50.3269 (5)0.7734 (4)0.04686 (17)0.0935 (8)
H5A0.47610.79640.04440.140*0.59 (4)
H5B0.21340.87440.09100.140*0.59 (4)
H5C0.35670.65260.06860.140*0.59 (4)
H5X0.48750.67890.04430.140*0.41 (4)
H5Y0.33290.89860.06880.140*0.41 (4)
H5Z0.22580.74590.09090.140*0.41 (4)
C60.1564 (4)0.6318 (3)0.26736 (16)0.0741 (6)
H6A0.27500.73620.29300.111*
H6B0.05680.54170.31940.111*
H6C0.23680.56890.23300.111*
C70.1383 (3)0.8968 (3)0.30347 (13)0.0591 (5)
C80.2539 (3)1.0343 (3)0.30342 (13)0.0594 (5)
H8A0.32791.06840.24800.071*
C90.2569 (3)1.1156 (3)0.38331 (13)0.0580 (4)
H9A0.17051.08330.43510.070*
C100.3421 (4)1.3206 (3)0.48415 (16)0.0786 (6)
H10A0.24441.27120.52820.118*
H10B0.26581.45750.46840.118*
H10C0.49921.28960.51390.118*
C110.5161 (5)1.2903 (4)0.3226 (2)0.0893 (7)
H11A0.63851.17710.30580.134*0.74 (4)
H11B0.59171.36900.34670.134*0.74 (4)
H11C0.41611.36130.26630.134*0.74 (4)
H11X0.67891.25270.34800.134*0.26 (4)
H11Y0.45121.42700.30300.134*0.26 (4)
H11Z0.51631.22760.26780.134*0.26 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0865 (4)0.0846 (4)0.0703 (4)0.0331 (3)0.0027 (3)0.0296 (3)
O10.1196 (13)0.1037 (12)0.0637 (8)0.0794 (10)0.0170 (8)0.0201 (7)
N10.0697 (10)0.0645 (9)0.0719 (10)0.0393 (8)0.0060 (7)0.0110 (7)
C10.0613 (10)0.0593 (10)0.0623 (10)0.0210 (8)0.0024 (8)0.0123 (8)
C20.0598 (10)0.0558 (10)0.0570 (10)0.0220 (8)0.0008 (7)0.0079 (8)
C30.0681 (12)0.0701 (12)0.0638 (11)0.0280 (10)0.0062 (9)0.0105 (9)
C40.0711 (12)0.0748 (13)0.0616 (11)0.0145 (10)0.0038 (9)0.0119 (9)
C50.1003 (18)0.1024 (19)0.0662 (13)0.0218 (14)0.0163 (12)0.0163 (12)
C60.0784 (14)0.0821 (14)0.0782 (13)0.0463 (11)0.0042 (10)0.0184 (10)
C70.0625 (11)0.0611 (11)0.0599 (10)0.0301 (9)0.0011 (8)0.0078 (8)
C80.0635 (11)0.0600 (11)0.0603 (10)0.0294 (8)0.0065 (8)0.0084 (8)
C90.0583 (10)0.0559 (10)0.0653 (10)0.0289 (8)0.0025 (8)0.0050 (8)
C100.0951 (16)0.0787 (14)0.0786 (13)0.0489 (12)0.0018 (11)0.0164 (11)
C110.0905 (16)0.0933 (16)0.1066 (17)0.0600 (14)0.0237 (13)0.0189 (13)
Geometric parameters (Å, º) top
S1—C41.715 (2)C5—H5Z0.9600
S1—C11.7161 (19)C6—H6A0.9600
O1—C71.239 (2)C6—H6B0.9600
N1—C91.325 (2)C6—H6C0.9600
N1—C101.447 (3)C7—C81.431 (3)
N1—C111.453 (3)C8—C91.357 (3)
C1—C21.364 (3)C8—H8A0.9300
C1—C61.502 (3)C9—H9A0.9300
C2—C31.434 (3)C10—H10A0.9600
C2—C71.492 (3)C10—H10B0.9600
C3—C41.348 (3)C10—H10C0.9600
C3—H3A0.9300C11—H11A0.9600
C4—C51.506 (3)C11—H11B0.9600
C5—H5A0.9600C11—H11C0.9600
C5—H5B0.9600C11—H11X0.9600
C5—H5C0.9600C11—H11Y0.9600
C5—H5X0.9600C11—H11Z0.9600
C5—H5Y0.9600
C4—S1—C193.45 (9)C1—C6—H6C109.5
C9—N1—C10121.97 (16)H6A—C6—H6C109.5
C9—N1—C11121.03 (18)H6B—C6—H6C109.5
C10—N1—C11116.98 (17)O1—C7—C8122.18 (17)
C2—C1—C6131.23 (18)O1—C7—C2119.57 (17)
C2—C1—S1110.76 (14)C8—C7—C2118.26 (16)
C6—C1—S1118.00 (14)C9—C8—C7120.80 (17)
C1—C2—C3111.44 (17)C9—C8—H8A119.6
C1—C2—C7123.46 (16)C7—C8—H8A119.6
C3—C2—C7125.09 (17)N1—C9—C8128.09 (17)
C4—C3—C2114.75 (19)N1—C9—H9A116.0
C4—C3—H3A122.6C8—C9—H9A116.0
C2—C3—H3A122.6N1—C10—H10A109.5
C3—C4—C5129.0 (2)N1—C10—H10B109.5
C3—C4—S1109.58 (15)H10A—C10—H10B109.5
C5—C4—S1121.38 (19)N1—C10—H10C109.5
C4—C5—H5A109.5H10A—C10—H10C109.5
C4—C5—H5B109.5H10B—C10—H10C109.5
C4—C5—H5C109.5N1—C11—H11A109.5
C4—C5—H5X109.5N1—C11—H11B109.5
C4—C5—H5Y109.5N1—C11—H11C109.5
H5X—C5—H5Y109.5N1—C11—H11X109.5
C4—C5—H5Z109.5N1—C11—H11Y109.5
H5X—C5—H5Z109.5H11X—C11—H11Y109.5
H5Y—C5—H5Z109.5N1—C11—H11Z109.5
C1—C6—H6A109.5H11X—C11—H11Z109.5
C1—C6—H6B109.5H11Y—C11—H11Z109.5
H6A—C6—H6B109.5
C4—S1—C1—C20.81 (15)C1—S1—C4—C5179.91 (19)
C4—S1—C1—C6178.17 (16)C1—C2—C7—O19.8 (3)
C6—C1—C2—C3178.17 (19)C3—C2—C7—O1170.80 (19)
S1—C1—C2—C30.6 (2)C1—C2—C7—C8170.86 (17)
C6—C1—C2—C72.3 (3)C3—C2—C7—C88.6 (3)
S1—C1—C2—C7178.87 (14)O1—C7—C8—C93.3 (3)
C1—C2—C3—C40.1 (2)C2—C7—C8—C9177.32 (17)
C7—C2—C3—C4179.42 (18)C10—N1—C9—C8176.0 (2)
C2—C3—C4—C5179.6 (2)C11—N1—C9—C82.5 (3)
C2—C3—C4—S10.5 (2)C7—C8—C9—N1175.62 (18)
C1—S1—C4—C30.76 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.962.463.410 (3)172
C5—H5B···Cg1ii0.962.773.641 (3)152
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC11H15NOS
Mr209.30
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.9114 (2), 7.5424 (2), 13.9940 (4)
α, β, γ (°)81.274 (2), 88.828 (3), 69.119 (3)
V3)575.83 (3)
Z2
Radiation typeCu Kα
µ (mm1)2.24
Crystal size (mm)0.82 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.260, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
7188, 1897, 1650
Rint0.034
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.08
No. of reflections1897
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.962.463.410 (3)172
C5—H5B···Cg1ii0.962.773.641 (3)152
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MMG, MSAS and HAG acknowledge the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAl-Said, M. S., Bashandy, M. S., Alqasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137–141.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhorab, M. M., Nassar, O. M. & Hassan, A. Y. (1998). Phosphorus Sulfur Silicon Relat. Elem. 134, 57–76.  Web of Science CrossRef Google Scholar
First citationGhorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & Galal, M. (2006). Arzneim. Forsch. Drug. Res. 56, 553–560.  CAS Google Scholar
First citationGogte, V. N., Shah, L. G., Tilak, B. D., Gadekar, K. N. & Sahasrabudhe, M. B. (1967). Tetrahedron, 23, 2437–2441.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHassan, A. Y., Ghorab, M. M. & Nassar, O. M. (1998). Phosphorus Sulfur Silicon Relat. Elem. 134, 77–86.  CrossRef Google Scholar
First citationKikugawa, K. & Ichino, M. (1973). Chem. Pharm. Bull. 21, 1151–1155.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrantz, A., Spencer, R. W., Tam, T. F., Liak, T. J., Copp, L. J., Thomas, E. M. & Rafferty, S. P. (1990). J. Med. Chem. 33, 464–479.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMedower, C., Wen, L. & Johnson, W. W. (2008). Chem. Res. Toxicol. 21, 1570–1577.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShaaban, M. A., Ghorab, M. M., Heiba, H. I., Kamel, M. M., Zaher, N. H. & Mostafa, M. I. (2010). Arch. Pharm. Chem. Life Sci. 343, 404–410.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1712-o1713
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds