organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Di­phenyl­phosphor­yl)(hy­dr­oxy)meth­yl]-5-meth­­oxy­phenol

aState Key Laboratory of Urban Water Resource and Environment (SKLUWRE) & Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
*Correspondence e-mail: xyyang@hit.edu.cn

(Received 28 April 2012; accepted 8 May 2012; online 12 May 2012)

In the title compound, C20H19O4P, the dihedral angle between the phenyl rings is 73.3 (4)° and the dihedral angles between the benzene ring and the two phenyl rings are 43.0 (3) and 54.3 (1)°. In the crystal, O—H⋯O hydrogen bonds and weak O—H⋯O inter­actions are observed, which form a supra­molecular sheet parallel to (010).

Related literature

For α-hy­droxy­lphosphine oxides, see: Marmor & Seyferth (1969[Marmor, R. S. & Seyferth, D. (1969). J. Org. Chem. 34, 748-749.]); Toyota et al. (1993[Toyota, M., Seishi, T. & Fukumoto, K. (1993). Tetrahedron Lett. 34, 5947-5950.]); Kaza­nkova et al. (2003[Kazankova, M. A., Shulyupin, M. O. & Beletskaya, I. P. (2003). Synlett, pp. 2155-2158.]); For substrates used in the preparation of α-carboxyl­phosphine oxides, see: Fischer et al. (1993[Fischer, M., Hickmann, E., Kropp, R., Schroeder, J. & Trentmann, B. (1993). US Patent 5504236.]) and for substrates used in the preparation of unsymmetrical phosphine oxides, see: Miller et al. (1957[Miller, R. C., Miller, C. D., Rogers, W. Jr & Hamilton, L. A. (1957). J. Am. Chem. Soc. 79, 424-427.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19O4P

  • Mr = 354.32

  • Monoclinic, P 21 /n

  • a = 8.349 (7) Å

  • b = 17.406 (14) Å

  • c = 12.639 (10) Å

  • β = 107.863 (9)°

  • V = 1748 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.982

  • 8150 measured reflections

  • 3017 independent reflections

  • 2124 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.04

  • 3017 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.81 2.613 (2) 168
O4—H4⋯O3ii 0.82 2.28 3.046 (3) 156
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α-hydroxylphosphine oxides are molecules (Marmor et al., 1969; Toyota, et al., 1993; Kazankova et al.., 2003) that are used as substrates for the preparation of α-carboxylphosphine oxides (Fischer, et al., 1993) and unsymmetrical phosphine oxides (Miller et al., 1957). We present herin, the preparation and crystal structure of the title compound, C20H19O4P, (I).

In the title compound (I), the dihedral angle between the two mono-substituted benzene rings is 73.3 (4)° (Fig. 1). The dihedral angle between the tri- substituted benzene ring and two mono-substituted benzene rings is 43. 0(3)° and 54.3 (0)°, respectively. O—H···O hydrogen bonds and weak O—H···O intermolecular interactions (Table 1) are observed which form a two-dimensional supramolecular sheet and influence crystal packing (Fig. 2).

Related literature top

For α-hydroxylphosphine oxides, see: Marmor & Seyferth (1969); Toyota et al. (1993); Kazankova et al. (2003); For substrates used in the preparation of α-carboxylphosphine oxides, see: Fischer et al. (1993) and for substrates used in the preparation of unsymmetrical phosphine oxides, see: Miller et al. (1957).

Experimental top

The title compound was obtained from the following procedure. To a flame dried round-bottomed flask, 2-hydroxy-4-methoxy-benzaldehyde (1.0equiv), potassiumtert-butoxide (1.5equiv) and anhydrous DMF were added under N2 protection. After the addition of chlorodiphenylphosphine (1.5 equiv. in anhydrous DMF) and stirred overnight at room temperature, water was added to quench the reaction. The product was extracted with CH2Cl2, dried with Na2SO4 and concentrated under pressure to give an oil residue, which was purified through a silica gel column to yield the title compound.

Refinement top

All H atoms were placed in calculated positions and then refined using the riding model, with atom–H lengths of 0.93Å (CH), 0.98Å or 0.82Å (OH) Isotropic displacement parameters were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed aloing the a axis. Dashed lines represent O—H···O hydrogen bonds and weak O—H···O intermolecular interactions. H atoms not involved in hydrogen bonding are omitted for clarity. [symmetry codes: (i) 1 - x, - y, 2 -z; (ii) x - 1/2, 0.5 - y, z - 0.5; (iii) x + 1/2, 0.5 - y, 0.5 + z].
2-[(Diphenylphosphoryl)(hydroxy)methyl]-5-methoxyphenol top
Crystal data top
C20H19O4PF(000) = 744
Mr = 354.32Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 255 reflections
a = 8.349 (7) Åθ = 25.6–3.1°
b = 17.406 (14) ŵ = 0.18 mm1
c = 12.639 (10) ÅT = 296 K
β = 107.863 (9)°Block, colourless
V = 1748 (2) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD APEXII
diffractometer
3017 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10 pixels mm-1θmax = 25.1°, θmin = 2.1°
ω scansh = 97
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 2020
Tmin = 0.965, Tmax = 0.982l = 1512
8150 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1885P]
where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H19O4PV = 1748 (2) Å3
Mr = 354.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.349 (7) ŵ = 0.18 mm1
b = 17.406 (14) ÅT = 296 K
c = 12.639 (10) Å0.20 × 0.15 × 0.10 mm
β = 107.863 (9)°
Data collection top
Bruker SMART CCD APEXII
diffractometer
3017 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2124 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.043
8150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3017 reflectionsΔρmin = 0.25 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.18172 (8)0.11354 (3)0.82003 (5)0.0358 (2)
O10.2141 (2)0.08777 (9)0.93707 (13)0.0448 (5)
O20.6011 (2)0.00424 (8)0.91075 (14)0.0510 (5)
H20.65700.02000.96520.077*
O30.9492 (2)0.21531 (10)1.09662 (15)0.0536 (5)
O40.3359 (2)0.13072 (10)0.66335 (14)0.0510 (5)
H40.37930.17330.66650.077*
C10.1266 (3)0.21306 (13)0.8032 (2)0.0380 (6)
C20.0631 (3)0.24707 (15)0.6995 (2)0.0497 (7)
H2A0.04310.21710.63590.060*
C30.0295 (4)0.32424 (16)0.6896 (3)0.0639 (9)
H30.01120.34660.61960.077*
C40.0560 (4)0.36781 (16)0.7825 (3)0.0725 (10)
H4A0.03070.42000.77570.087*
C50.1198 (5)0.33591 (16)0.8866 (3)0.0749 (10)
H50.13850.36650.94950.090*
C60.1560 (4)0.25804 (15)0.8973 (2)0.0551 (8)
H60.19980.23620.96750.066*
C70.0125 (3)0.06133 (13)0.7244 (2)0.0389 (6)
C80.1523 (4)0.07782 (17)0.7203 (2)0.0587 (8)
H80.17370.11760.76320.070*
C90.2837 (4)0.03577 (19)0.6533 (3)0.0698 (9)
H90.39330.04770.65110.084*
C100.2562 (4)0.02306 (18)0.5903 (3)0.0629 (9)
H100.34600.05170.54620.076*
C110.0960 (4)0.03961 (17)0.5925 (3)0.0651 (9)
H110.07640.07920.54860.078*
C120.0377 (4)0.00201 (15)0.6594 (2)0.0572 (8)
H120.14660.01030.66050.069*
C130.3672 (3)0.10114 (13)0.77302 (19)0.0368 (6)
H130.38310.04560.76800.044*
C140.5235 (3)0.13105 (13)0.85807 (19)0.0363 (6)
C150.6364 (3)0.07990 (12)0.92673 (19)0.0363 (6)
C160.7810 (3)0.10582 (13)1.0067 (2)0.0404 (6)
H160.85600.07101.05190.048*
C170.8119 (3)0.18334 (14)1.0182 (2)0.0412 (6)
C180.7035 (3)0.23562 (14)0.9503 (2)0.0465 (7)
H180.72690.28790.95750.056*
C190.5600 (3)0.20922 (13)0.8717 (2)0.0438 (7)
H190.48600.24440.82680.053*
C201.0787 (4)0.16408 (17)1.1566 (2)0.0635 (9)
H20A1.03680.13201.20400.095*
H20B1.17320.19321.20090.095*
H20C1.11320.13261.10510.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0395 (4)0.0306 (3)0.0328 (4)0.0029 (3)0.0043 (3)0.0020 (3)
O10.0551 (12)0.0408 (9)0.0339 (10)0.0076 (8)0.0070 (8)0.0076 (8)
O20.0608 (13)0.0318 (9)0.0454 (12)0.0020 (8)0.0059 (9)0.0032 (8)
O30.0452 (11)0.0561 (11)0.0473 (11)0.0069 (9)0.0035 (9)0.0058 (9)
O40.0523 (12)0.0566 (12)0.0382 (11)0.0021 (9)0.0052 (9)0.0001 (8)
C10.0376 (15)0.0336 (12)0.0420 (15)0.0032 (10)0.0113 (12)0.0028 (11)
C20.0507 (17)0.0484 (15)0.0498 (17)0.0114 (13)0.0153 (14)0.0107 (13)
C30.061 (2)0.0520 (18)0.082 (2)0.0177 (15)0.0261 (18)0.0295 (17)
C40.077 (2)0.0345 (16)0.111 (3)0.0128 (15)0.036 (2)0.0162 (19)
C50.098 (3)0.0414 (17)0.084 (3)0.0054 (17)0.027 (2)0.0193 (16)
C60.067 (2)0.0413 (15)0.0536 (19)0.0057 (14)0.0141 (16)0.0002 (13)
C70.0437 (16)0.0392 (13)0.0317 (14)0.0021 (11)0.0083 (12)0.0027 (11)
C80.0465 (18)0.0670 (19)0.064 (2)0.0067 (14)0.0193 (15)0.0151 (15)
C90.0446 (19)0.085 (2)0.076 (2)0.0130 (17)0.0135 (17)0.0075 (19)
C100.055 (2)0.073 (2)0.054 (2)0.0242 (16)0.0065 (16)0.0039 (16)
C110.072 (2)0.0586 (18)0.063 (2)0.0190 (17)0.0185 (18)0.0223 (15)
C120.0478 (18)0.0513 (17)0.070 (2)0.0069 (13)0.0144 (16)0.0182 (15)
C130.0390 (15)0.0327 (12)0.0340 (14)0.0028 (10)0.0042 (11)0.0002 (10)
C140.0371 (14)0.0358 (13)0.0336 (14)0.0011 (10)0.0074 (11)0.0002 (10)
C150.0399 (15)0.0327 (13)0.0337 (14)0.0010 (11)0.0073 (12)0.0022 (10)
C160.0407 (15)0.0416 (14)0.0355 (15)0.0064 (11)0.0065 (12)0.0040 (11)
C170.0399 (15)0.0464 (14)0.0342 (15)0.0054 (12)0.0070 (12)0.0039 (11)
C180.0501 (17)0.0331 (13)0.0487 (17)0.0054 (12)0.0038 (14)0.0000 (12)
C190.0463 (16)0.0347 (13)0.0420 (16)0.0039 (11)0.0012 (13)0.0045 (11)
C200.0416 (18)0.080 (2)0.057 (2)0.0037 (15)0.0022 (15)0.0090 (16)
Geometric parameters (Å, º) top
P1—O11.489 (2)C8—C91.373 (4)
P1—C11.788 (3)C8—H80.9300
P1—C71.799 (3)C9—C101.359 (4)
P1—C131.833 (3)C9—H90.9300
O2—C151.351 (3)C10—C111.360 (4)
O2—H20.8200C10—H100.9300
O3—C171.382 (3)C11—C121.381 (4)
O3—C201.426 (3)C11—H110.9300
O4—C131.426 (3)C12—H120.9300
O4—H40.8200C13—C141.507 (3)
C1—C61.382 (3)C13—H130.9800
C1—C21.386 (3)C14—C151.390 (3)
C2—C31.370 (4)C14—C191.394 (3)
C2—H2A0.9300C15—C161.391 (3)
C3—C41.358 (4)C16—C171.373 (3)
C3—H30.9300C16—H160.9300
C4—C51.375 (4)C17—C181.381 (3)
C4—H4A0.9300C18—C191.379 (3)
C5—C61.386 (4)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H20A0.9600
C7—C121.375 (4)C20—H20B0.9600
C7—C81.391 (4)C20—H20C0.9600
O1—P1—C1111.82 (11)C11—C10—H10120.3
O1—P1—C7112.41 (11)C10—C11—C12120.4 (3)
C1—P1—C7106.81 (12)C10—C11—H11119.8
O1—P1—C13111.88 (11)C12—C11—H11119.8
C1—P1—C13106.70 (11)C7—C12—C11121.1 (3)
C7—P1—C13106.86 (13)C7—C12—H12119.4
C15—O2—H2109.5C11—C12—H12119.4
C17—O3—C20117.1 (2)O4—C13—C14115.4 (2)
C13—O4—H4109.5O4—C13—P1110.58 (16)
C6—C1—C2119.2 (2)C14—C13—P1111.17 (17)
C6—C1—P1118.36 (19)O4—C13—H13106.4
C2—C1—P1122.41 (19)C14—C13—H13106.4
C3—C2—C1120.9 (3)P1—C13—H13106.4
C3—C2—H2A119.6C15—C14—C19117.9 (2)
C1—C2—H2A119.6C15—C14—C13119.8 (2)
C4—C3—C2119.6 (3)C19—C14—C13122.3 (2)
C4—C3—H3120.2O2—C15—C14117.1 (2)
C2—C3—H3120.2O2—C15—C16121.7 (2)
C3—C4—C5120.9 (3)C14—C15—C16121.1 (2)
C3—C4—H4A119.5C17—C16—C15119.3 (2)
C5—C4—H4A119.5C17—C16—H16120.4
C4—C5—C6119.8 (3)C15—C16—H16120.4
C4—C5—H5120.1C16—C17—C18121.0 (2)
C6—C5—H5120.1C16—C17—O3124.0 (2)
C1—C6—C5119.6 (3)C18—C17—O3114.9 (2)
C1—C6—H6120.2C19—C18—C17119.1 (2)
C5—C6—H6120.2C19—C18—H18120.4
C12—C7—C8117.6 (2)C17—C18—H18120.4
C12—C7—P1123.2 (2)C18—C19—C14121.5 (2)
C8—C7—P1119.0 (2)C18—C19—H19119.2
C9—C8—C7120.4 (3)C14—C19—H19119.2
C9—C8—H8119.8O3—C20—H20A109.5
C7—C8—H8119.8O3—C20—H20B109.5
C10—C9—C8121.1 (3)H20A—C20—H20B109.5
C10—C9—H9119.5O3—C20—H20C109.5
C8—C9—H9119.5H20A—C20—H20C109.5
C9—C10—C11119.3 (3)H20B—C20—H20C109.5
C9—C10—H10120.3
O1—P1—C1—C614.3 (3)C10—C11—C12—C70.6 (5)
C7—P1—C1—C6137.7 (2)O1—P1—C13—O4176.33 (14)
C13—P1—C1—C6108.3 (2)C1—P1—C13—O453.73 (18)
O1—P1—C1—C2168.7 (2)C7—P1—C13—O460.24 (18)
C7—P1—C1—C245.3 (2)O1—P1—C13—C1446.77 (19)
C13—P1—C1—C268.7 (2)C1—P1—C13—C1475.83 (18)
C6—C1—C2—C30.0 (4)C7—P1—C13—C14170.20 (15)
P1—C1—C2—C3177.0 (2)O4—C13—C14—C15130.8 (2)
C1—C2—C3—C41.1 (4)P1—C13—C14—C15102.3 (2)
C2—C3—C4—C51.5 (5)O4—C13—C14—C1949.7 (3)
C3—C4—C5—C60.7 (5)P1—C13—C14—C1977.3 (3)
C2—C1—C6—C50.7 (4)C19—C14—C15—O2178.5 (2)
P1—C1—C6—C5177.8 (2)C13—C14—C15—O21.9 (3)
C4—C5—C6—C10.4 (5)C19—C14—C15—C160.1 (4)
O1—P1—C7—C12100.7 (2)C13—C14—C15—C16179.4 (2)
C1—P1—C7—C12136.3 (2)O2—C15—C16—C17179.0 (2)
C13—P1—C7—C1222.4 (3)C14—C15—C16—C170.4 (4)
O1—P1—C7—C874.9 (2)C15—C16—C17—C181.3 (4)
C1—P1—C7—C848.0 (2)C15—C16—C17—O3178.4 (2)
C13—P1—C7—C8161.9 (2)C20—O3—C17—C1610.2 (4)
C12—C7—C8—C90.0 (4)C20—O3—C17—C18170.1 (2)
P1—C7—C8—C9175.9 (2)C16—C17—C18—C191.7 (4)
C7—C8—C9—C100.5 (5)O3—C17—C18—C19178.1 (2)
C8—C9—C10—C111.0 (5)C17—C18—C19—C141.1 (4)
C9—C10—C11—C121.1 (5)C15—C14—C19—C180.2 (4)
C8—C7—C12—C110.0 (4)C13—C14—C19—C18179.7 (2)
P1—C7—C12—C11175.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.812.613 (2)168
O4—H4···O3ii0.822.283.046 (3)156
Symmetry codes: (i) x+1, y, z+2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H19O4P
Mr354.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.349 (7), 17.406 (14), 12.639 (10)
β (°) 107.863 (9)
V3)1748 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8150, 3017, 2124
Rint0.043
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.04
No. of reflections3017
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.812.613 (2)167.5
O4—H4···O3ii0.822.283.046 (3)155.7
Symmetry codes: (i) x+1, y, z+2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The work is supported by the National Natural Science Foundation (Nos 21002018 and 21072038), the Fundamental Research Funds for the Central Universities (No. HIT.BRET2.2010001), WZSTP (No. G20100056), ZJSTP (No. 2011-C23116).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFischer, M., Hickmann, E., Kropp, R., Schroeder, J. & Trentmann, B. (1993). US Patent 5504236.  Google Scholar
First citationKazankova, M. A., Shulyupin, M. O. & Beletskaya, I. P. (2003). Synlett, pp. 2155–2158.  Google Scholar
First citationMarmor, R. S. & Seyferth, D. (1969). J. Org. Chem. 34, 748–749.  CrossRef CAS Web of Science Google Scholar
First citationMiller, R. C., Miller, C. D., Rogers, W. Jr & Hamilton, L. A. (1957). J. Am. Chem. Soc. 79, 424–427.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToyota, M., Seishi, T. & Fukumoto, K. (1993). Tetrahedron Lett. 34, 5947–5950.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds