organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1693-o1694

4-Cyano­pyridinium di­hydrogen phosphate–isonicotino­nitrile–phospho­ric acid (1/1/1)

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangyc33@yahoo.com.cn

(Received 3 May 2012; accepted 7 May 2012; online 12 May 2012)

The asymmetric unit of the title compound, C6H5N2+·H2PO4·C6H4N2·H3PO4, contains one 4-cyano­pyridinium cation, one H2PO4 anion, one independent isonicotinonitrile mol­ecule and one independent H3PO4 mol­ecule. The dihedral angle between the mean planes of the separate protonated and unprotonated pyridine rings is 9.93 (8)°. In the crystal, N—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O and C—H⋯N inter­molecular inter­actions connect the organic mol­ecules into a two-dimensional network parallel to the ac plane. O—H⋯O hydrogen-bonding inter­actions involving the H2PO4 anions and H3PO4 mol­ecules provide additional support from the inorganic groups Weak ππ stacking inter­actions between the pyridine rings of neighbouring organic mol­ecules [centroid–centroid distances = 3.711 (4) and 3.784 (2) Å] further link the layers into a three-dimensional network.

Related literature

For the properties of related compounds, see: Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]). For related structures, see: Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]); Xue et al. (2002[Xue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495-497.]); Ye et al. (2008[Ye, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S. P. D. (2008). Inorg. Chem. 47, 772-774.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5N2+·H2O4P·C6H4N2·H3O4P

  • Mr = 404.21

  • Triclinic, [P \overline 1]

  • a = 8.1040 (5) Å

  • b = 8.8872 (9) Å

  • c = 12.1606 (8) Å

  • α = 81.491 (1)°

  • β = 82.009 (1)°

  • γ = 79.133 (1)°

  • V = 845.07 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 173 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 8963 measured reflections

  • 3798 independent reflections

  • 3306 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.096

  • S = 1.14

  • 3798 reflections

  • 235 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.82 1.75 2.5576 (14) 169
O4—H4⋯O3ii 0.82 1.74 2.5611 (14) 176
O6—H6⋯N1iii 0.82 1.86 2.6749 (17) 178
O7—H7⋯O1iv 0.82 1.70 2.5150 (15) 173
O8—H8⋯O3ii 0.82 1.76 2.5795 (15) 177
N3—H3⋯O1 0.90 1.77 2.6466 (16) 162
C1—H1A⋯O2v 0.95 2.44 3.2549 (19) 144
C8—H8A⋯N2vi 0.95 2.51 3.273 (2) 138
C10—H10A⋯O7vii 0.95 2.31 3.1631 (19) 149
C11—H11A⋯O1v 0.95 2.52 3.3321 (19) 144
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) x-1, y+1, z; (iv) x, y+1, z; (v) -x+1, -y, -z+2; (vi) -x+1, -y+1, -z+1; (vii) x+1, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containing strong intrermolecular H-bonds have attracted attention as materials which display ferroelectric-paraelectric phase transitions (Chen et al., 2001; Huang, et al. 1999; Zhang, et al. 2001). In an effort to obtain phase transition crystals of organic salts, various organic molecules have been studied with a series of new crystal materials (Wang et al., 2002; Xue, et al. 2002; Ye et al., 2008). Herewith, we present the synthesis and crystal structure of the title compound, C6H5N2+.H2PO4-.C6H4N2.H3PO4,(I).

The asymmetric unit of (I) is comprised of one 4-cyanopyridinium cation, one H2PO4- anion, one independent isonicotinonitrile molecule and one independent H3PO4 molecule (Fig. 1). The two separate pyridine rings in the asymmetric unit are almost planar with the largest deviation from the least-squares plane being 0.001 (1) Å and 0.003 (1) Å, respectively. The dihedral angle between the mean planes of the two separate pyridine rings is 9.93 (8)°. Bond lengths and angles in each of these units are in normal ranges.

In the crystal N—H···O and O—H···N hydrogen bonds and weak C—H···O and C—H···N intermolecular interactions bring the organic molecules into a 2D network (Fig. 2). Also, O—H···O hydrogen bonding interactions involving the H2PO4- anions and H3PO4 molecules provide additional support for the 2D network from the inorganic groups (Table 1, Fig. 3). In addition, weak ππ stacking interactions between the pyridine rings of neighbouring organic molecules further link the layers into a 3D network (Cg1···Cg2 = 3.711 (4) Å and Cg1···Cg2 = 3.784 (2) Å, where Cg1 and Cg2 are the centroids of the pyridine rings, N1/C1/C2/C3/C4/C5 and N3/C7/C8/C9/C10/C11, respectively).

Related literature top

For the properties of related compounds, see: Chen et al. (2001); Huang et al. (1999); Zhang et al. (2001). For related structures, see: Wang et al. (2002); Xue et al. (2002); Ye et al. (2008)

Experimental top

Isonicotinonitrile (10 mmol and stirred at 60°C for 2 h. The precipitate was then filtrated. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement top

H2, H3, H4, H6 and H8 were refined freely. In the last stages of the refinement these atoms were restrained with N3—H3 = 0.90 (2)Å and O2—H2, O4—H4, O6–H6, O8—H8 all = 0.82 (2)Å with Uiso(H) = 1.2Ueq(N) and Uiso(H)=1.5Ueq(O). All the remaining H atoms attached to C atoms were placed in calculated positions and then refined using the riding model with C—H lengths of 0.95 Å (CH). The isotropic displcement parameers for these atoms were set to 1.2 (CH) times Ueq of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids for one cation-anion unit and bimolecular unit in the asymmetric unit.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis showing O—H···O, O—H···N, hydrogen bonds (dotted lines), weak C—H···O, C—H···N intermolecular interactions (dotted lines) and weak ππ stacking interactions (dashed lines).
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the c axis showing the O—H···O hydrogen bonds (dotted line).
4-Cyanopyridinium dihydrogen phosphate–isonicotinonitrile–phosphoric acid (1/1/1) top
Crystal data top
C6H5N2+·H2O4P·C6H4N2·H3O4PZ = 2
Mr = 404.21F(000) = 416
Triclinic, P1Dx = 1.589 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1040 (5) ÅCell parameters from 3798 reflections
b = 8.8872 (9) Åθ = 2.6–27.5°
c = 12.1606 (8) ŵ = 0.31 mm1
α = 81.491 (1)°T = 173 K
β = 82.009 (1)°Block, colorless
γ = 79.133 (1)°0.10 × 0.05 × 0.05 mm
V = 845.07 (11) Å3
Data collection top
Rigaku Mercury2
diffractometer
3798 independent reflections
Radiation source: fine-focus sealed tube3306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.6°
CCD profile fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.910, Tmax = 1.000l = 1515
8963 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0597P)2]
where P = (Fo2 + 2Fc2)/3
3798 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.34 e Å3
6 restraintsΔρmin = 0.40 e Å3
Crystal data top
C6H5N2+·H2O4P·C6H4N2·H3O4Pγ = 79.133 (1)°
Mr = 404.21V = 845.07 (11) Å3
Triclinic, P1Z = 2
a = 8.1040 (5) ÅMo Kα radiation
b = 8.8872 (9) ŵ = 0.31 mm1
c = 12.1606 (8) ÅT = 173 K
α = 81.491 (1)°0.10 × 0.05 × 0.05 mm
β = 82.009 (1)°
Data collection top
Rigaku Mercury2
diffractometer
3798 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3306 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.023
8963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0306 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.14Δρmax = 0.34 e Å3
3798 reflectionsΔρmin = 0.40 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.02100 (16)0.12068 (15)0.59294 (11)0.0141 (3)
N20.39938 (18)0.32104 (18)0.46853 (13)0.0273 (4)
C40.83067 (19)0.30110 (18)0.48280 (13)0.0158 (3)
H4A0.81180.39030.42940.019*
C50.98861 (19)0.24689 (18)0.51769 (13)0.0155 (3)
H5A1.07840.30100.48730.019*
C60.5317 (2)0.27525 (19)0.49470 (14)0.0188 (3)
C20.73050 (19)0.09074 (18)0.60593 (13)0.0152 (3)
H2A0.64290.03470.63780.018*
C30.69979 (19)0.22094 (18)0.52833 (13)0.0142 (3)
C10.89403 (19)0.04504 (18)0.63541 (13)0.0146 (3)
H1A0.91660.04420.68830.018*
N30.50667 (15)0.28063 (14)0.85938 (11)0.0138 (3)
H30.40490.25820.88970.017*
N41.12529 (17)0.40818 (17)0.74487 (12)0.0216 (3)
C110.63720 (19)0.18015 (18)0.89738 (13)0.0146 (3)
H11A0.61780.08860.94470.017*
C80.6851 (2)0.44610 (18)0.75916 (13)0.0158 (3)
H8A0.70080.53770.71070.019*
C90.82275 (18)0.34390 (17)0.79861 (12)0.0128 (3)
C100.79957 (19)0.20896 (18)0.86819 (13)0.0149 (3)
H10A0.89320.13850.89490.018*
C70.52563 (19)0.41132 (18)0.79207 (13)0.0162 (3)
H7A0.42940.47980.76710.019*
C120.9921 (2)0.37991 (18)0.76837 (13)0.0158 (3)
P10.15691 (4)0.29108 (4)1.05923 (3)0.00975 (11)
O10.24327 (13)0.17698 (12)0.97909 (9)0.0140 (2)
O20.21239 (13)0.23350 (12)1.17856 (9)0.0145 (2)
H20.31490.20341.17160.022*
O30.03370 (12)0.32218 (12)1.06993 (9)0.0131 (2)
O40.22876 (13)0.44436 (12)1.01948 (9)0.0140 (2)
H40.16350.51620.99020.021*
P20.31115 (5)0.91637 (4)0.78249 (3)0.01113 (11)
O50.47632 (13)0.89331 (13)0.82709 (9)0.0184 (3)
O60.32346 (13)1.01043 (13)0.66430 (9)0.0163 (2)
H60.23171.04440.64120.024*
O70.16276 (13)1.00119 (12)0.85896 (9)0.0153 (2)
H70.19631.05390.89840.023*
O80.24974 (14)0.76550 (12)0.76809 (9)0.0167 (2)
H80.18130.74010.82060.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0147 (6)0.0160 (6)0.0114 (7)0.0017 (5)0.0025 (5)0.0017 (5)
N20.0158 (7)0.0357 (9)0.0274 (9)0.0039 (6)0.0062 (6)0.0085 (7)
C40.0170 (7)0.0155 (7)0.0138 (8)0.0025 (6)0.0025 (6)0.0015 (6)
C50.0148 (7)0.0173 (8)0.0143 (8)0.0042 (6)0.0015 (6)0.0006 (6)
C60.0162 (8)0.0215 (8)0.0173 (8)0.0039 (6)0.0015 (6)0.0027 (6)
C20.0154 (7)0.0172 (8)0.0134 (8)0.0046 (6)0.0009 (6)0.0013 (6)
C30.0129 (7)0.0169 (7)0.0128 (8)0.0006 (6)0.0032 (6)0.0029 (6)
C10.0175 (8)0.0144 (7)0.0113 (7)0.0017 (6)0.0024 (6)0.0006 (6)
N30.0107 (6)0.0164 (6)0.0145 (7)0.0030 (5)0.0010 (5)0.0043 (5)
N40.0176 (7)0.0241 (8)0.0239 (8)0.0074 (6)0.0024 (6)0.0010 (6)
C110.0155 (7)0.0148 (7)0.0130 (8)0.0034 (6)0.0005 (6)0.0004 (6)
C80.0185 (8)0.0148 (7)0.0149 (8)0.0049 (6)0.0039 (6)0.0000 (6)
C90.0131 (7)0.0159 (7)0.0111 (7)0.0038 (6)0.0012 (6)0.0057 (6)
C100.0131 (7)0.0147 (7)0.0160 (8)0.0004 (6)0.0025 (6)0.0013 (6)
C70.0147 (7)0.0155 (7)0.0181 (8)0.0001 (6)0.0053 (6)0.0013 (6)
C120.0178 (8)0.0167 (8)0.0136 (8)0.0044 (6)0.0023 (6)0.0019 (6)
P10.00801 (19)0.00916 (19)0.0115 (2)0.00048 (14)0.00172 (14)0.00001 (14)
O10.0128 (5)0.0137 (5)0.0159 (6)0.0019 (4)0.0008 (4)0.0043 (4)
O20.0110 (5)0.0181 (6)0.0123 (6)0.0013 (4)0.0024 (4)0.0014 (4)
O30.0088 (5)0.0123 (5)0.0169 (6)0.0009 (4)0.0020 (4)0.0019 (4)
O40.0108 (5)0.0093 (5)0.0213 (6)0.0010 (4)0.0052 (4)0.0021 (4)
P20.00841 (19)0.0120 (2)0.0126 (2)0.00073 (14)0.00240 (14)0.00054 (15)
O50.0098 (5)0.0251 (6)0.0198 (6)0.0011 (4)0.0054 (4)0.0024 (5)
O60.0110 (5)0.0196 (6)0.0164 (6)0.0024 (4)0.0037 (4)0.0049 (4)
O70.0109 (5)0.0162 (5)0.0206 (6)0.0022 (4)0.0016 (4)0.0082 (4)
O80.0186 (6)0.0138 (5)0.0173 (6)0.0051 (4)0.0047 (4)0.0037 (4)
Geometric parameters (Å, º) top
N1—C11.337 (2)C8—C91.392 (2)
N1—C51.3477 (19)C8—H8A0.9500
N2—C61.144 (2)C9—C101.389 (2)
C4—C51.381 (2)C9—C121.453 (2)
C4—C31.394 (2)C10—H10A0.9500
C4—H4A0.9500C7—H7A0.9500
C5—H5A0.9500P1—O31.5077 (10)
C6—C31.450 (2)P1—O11.5176 (11)
C2—C31.387 (2)P1—O21.5635 (11)
C2—C11.391 (2)P1—O41.5666 (11)
C2—H2A0.9500O2—H20.8195
C1—H1A0.9500O4—H40.8198
N3—C111.3370 (19)P2—O51.4811 (11)
N3—C71.339 (2)P2—O61.5526 (11)
N3—H30.9008P2—O81.5560 (11)
N4—C121.142 (2)P2—O71.5601 (11)
C11—C101.376 (2)O6—H60.8196
C11—H11A0.9500O7—H70.8208
C8—C71.377 (2)O8—H80.8198
C1—N1—C5118.22 (13)C10—C9—C12119.62 (14)
C5—C4—C3117.97 (14)C8—C9—C12119.72 (14)
C5—C4—H4A121.0C11—C10—C9118.16 (14)
C3—C4—H4A121.0C11—C10—H10A120.9
N1—C5—C4122.96 (14)C9—C10—H10A120.9
N1—C5—H5A118.5N3—C7—C8119.76 (14)
C4—C5—H5A118.5N3—C7—H7A120.1
N2—C6—C3178.62 (18)C8—C7—H7A120.1
C3—C2—C1117.73 (14)N4—C12—C9179.83 (17)
C3—C2—H2A121.1O3—P1—O1115.74 (6)
C1—C2—H2A121.1O3—P1—O2108.01 (6)
C2—C3—C4119.98 (14)O1—P1—O2109.65 (6)
C2—C3—C6120.42 (14)O3—P1—O4110.60 (6)
C4—C3—C6119.60 (14)O1—P1—O4106.72 (6)
N1—C1—C2123.16 (14)O2—P1—O4105.66 (6)
N1—C1—H1A118.4P1—O2—H2107.9
C2—C1—H1A118.4P1—O4—H4115.8
C11—N3—C7122.80 (13)O5—P2—O6109.29 (6)
C11—N3—H3113.8O5—P2—O8115.10 (6)
C7—N3—H3123.0O6—P2—O8105.90 (6)
N3—C11—C10120.21 (14)O5—P2—O7113.15 (6)
N3—C11—H11A119.9O6—P2—O7109.13 (6)
C10—C11—H11A119.9O8—P2—O7103.84 (6)
C7—C8—C9118.43 (15)P2—O6—H6114.0
C7—C8—H8A120.8P2—O7—H7111.9
C9—C8—H8A120.8P2—O8—H8112.0
C10—C9—C8120.65 (14)
C1—N1—C5—C40.0 (2)C7—N3—C11—C100.3 (2)
C3—C4—C5—N10.2 (2)C7—C8—C9—C100.9 (2)
C1—C2—C3—C40.0 (2)C7—C8—C9—C12177.97 (14)
C1—C2—C3—C6179.54 (14)N3—C11—C10—C90.2 (2)
C5—C4—C3—C20.2 (2)C8—C9—C10—C110.5 (2)
C5—C4—C3—C6179.34 (14)C12—C9—C10—C11178.46 (14)
C5—N1—C1—C20.2 (2)C11—N3—C7—C80.2 (2)
C3—C2—C1—N10.2 (2)C9—C8—C7—N30.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.821.752.5576 (14)169
O4—H4···O3ii0.821.742.5611 (14)176
O6—H6···N1iii0.821.862.6749 (17)178
O7—H7···O1iv0.821.702.5150 (15)173
O8—H8···O3ii0.821.762.5795 (15)177
N3—H3···O10.901.772.6466 (16)162
C1—H1A···O2v0.952.443.2549 (19)144
C8—H8A···N2vi0.952.513.273 (2)138
C10—H10A···O7vii0.952.313.1631 (19)149
C11—H11A···O1v0.952.523.3321 (19)144
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x+1, y, z+2; (vi) x+1, y+1, z+1; (vii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC6H5N2+·H2O4P·C6H4N2·H3O4P
Mr404.21
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.1040 (5), 8.8872 (9), 12.1606 (8)
α, β, γ (°)81.491 (1), 82.009 (1), 79.133 (1)
V3)845.07 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8963, 3798, 3306
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.096, 1.14
No. of reflections3798
No. of parameters235
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.40

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.821.752.5576 (14)168.8
O4—H4···O3ii0.821.742.5611 (14)176.0
O6—H6···N1iii0.821.862.6749 (17)178.4
O7—H7···O1iv0.821.702.5150 (15)173.2
O8—H8···O3ii0.821.762.5795 (15)177.2
N3—H3···O10.901.772.6466 (16)162.4
C1—H1A···O2v0.952.443.2549 (19)144
C8—H8A···N2vi0.952.513.273 (2)138
C10—H10A···O7vii0.952.313.1631 (19)149
C11—H11A···O1v0.952.523.3321 (19)144
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x+1, y, z+2; (vi) x+1, y+1, z+1; (vii) x+1, y1, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495–497.  CSD CrossRef CAS Google Scholar
First citationYe, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S. P. D. (2008). Inorg. Chem. 47, 772–774.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1693-o1694
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds