organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phen­yl)-3,4,5-trimeth­­oxy­benzamide

aCollege of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
*Correspondence e-mail: njguwen@163.com

(Received 25 April 2012; accepted 27 April 2012; online 5 May 2012)

In the title compound, C16H16BrNO4, the dihedral angle between the two aromatic rings is 67.51 (25)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds involving the N—H and C=O groups of the amide function, leading to a chain along [-101].

Related literature

For the synthesis and biological activity of 3,4,5-trimeth­oxy­benzamide derivatives, see: Buettner et al. (2009[Buettner, A., Seifert, K., Cottin, T., Sarli, V., Tzagkaroulaki, L., Scholz, S. & Giannis, A. (2009). Bioorg. Med. Chem. Lett. 19, 4574-4578.]); Pellicani et al. (2012[Pellicani, R. Z., Stefanachi, A., Niso, M., Carotti, A., Leonetti, F., Nicolotti, O., Perrone, R., Berardi, F., Cellamare, S. & Colabufo, N. A. (2012). J. Med. Chem. 55, 424-436.]). For related structures, see: Saeed & Flörke (2009[Saeed, A. & Flörke, U. (2009). Acta Cryst. E65, o1948.]); Saeed et al. (2008[Saeed, A., Khera, R. A., Batool, M., Shaheen, U. & Flörke, U. (2008). Acta Cryst. E64, o1625.]); Choi et al. (2010[Choi, H., Han, B. H., Lee, T., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o1142.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16BrNO4

  • Mr = 366.21

  • Monoclinic, C c

  • a = 9.5860 (19) Å

  • b = 26.010 (5) Å

  • c = 7.1390 (14) Å

  • β = 112.04 (3)°

  • V = 1649.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.51 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.634, Tmax = 0.788

  • 3194 measured reflections

  • 1616 independent reflections

  • 1206 reflections with I > 2σ(I)

  • Rint = 0.064

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.094

  • S = 1.00

  • 1616 reflections

  • 199 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 91 Friedel pairs

  • Flack parameter: 0.010 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O4i 0.86 2.19 2.909 (9) 140
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing research on the synthesis and biological activities of 3,4,5-trimethoxy-benzamide derivatives, the title compound (I) was synthesised and its crystal structure was determined (Fig. 1). In the crystal packing N-H···O hydrogen bond generates a chain along [101] (Table 1).

Related literature top

For the synthesis and biological activity of 3,4,5-trimethoxybenzamide derivatives, see: Buettner et al. (2009); Pellicani et al. (2012). For related structures, see: Saeed & Flörke (2009); Saeed et al. (2008); Choi et al. (2010).

Experimental top

To a solution of 3,4,5-Trimethoxybenzoyl chloride (1.15 g, 5 mmol) in benzene (20 mL) was added 4-bromoaniline (0.95 g, 5.5 mmol) and triethylamine (0.56 g, 5.5 mmol). The mixture was stirred at room temperature for 12 h. After cooling, the reaction mixture was filtered to remove precipitate, and the filtrate was evaporated in vacuo to afford a white solid, which was recrystalised in EtOH to give the title compound (I) as a colourless prisms (1.5 g, 82%). Single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of an ethanol solution at room temperature over 7 d.

Refinement top

All H atoms were placed in idealized positions with C—H = 0.93 or 0.96 Å, N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.2Ueq (C,N), or 1.5Ueq for methyl-C.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with 30% probability displacement ellipsoids for non-H atoms.
N-(4-Bromophenyl)-3,4,5-trimethoxybenzamide top
Crystal data top
C16H16BrNO4F(000) = 744
Mr = 366.21Dx = 1.474 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 9.5860 (19) Åθ = 10–13°
b = 26.010 (5) ŵ = 2.51 mm1
c = 7.1390 (14) ÅT = 293 K
β = 112.04 (3)°Block, colourless
V = 1649.9 (6) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1206 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 3131
Tmin = 0.634, Tmax = 0.788l = 87
3194 measured reflections3 standard reflections every 200 reflections
1616 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1616 reflectionsΔρmax = 0.37 e Å3
199 parametersΔρmin = 0.26 e Å3
2 restraintsAbsolute structure: Flack (1983), 91 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (17)
Crystal data top
C16H16BrNO4V = 1649.9 (6) Å3
Mr = 366.21Z = 4
Monoclinic, CcMo Kα radiation
a = 9.5860 (19) ŵ = 2.51 mm1
b = 26.010 (5) ÅT = 293 K
c = 7.1390 (14) Å0.20 × 0.10 × 0.10 mm
β = 112.04 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1206 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.064
Tmin = 0.634, Tmax = 0.7883 standard reflections every 200 reflections
3194 measured reflections intensity decay: 1%
1616 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.37 e Å3
S = 1.00Δρmin = 0.26 e Å3
1616 reflectionsAbsolute structure: Flack (1983), 91 Friedel pairs
199 parametersAbsolute structure parameter: 0.010 (17)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.49808 (11)0.47594 (3)0.04427 (12)0.0691 (3)
N0.5036 (10)0.28535 (15)0.5367 (13)0.0464 (12)
H0A0.57290.28400.65550.056*
O10.4265 (6)0.05888 (17)0.6046 (7)0.0626 (14)
C60.5016 (7)0.2076 (3)0.8251 (10)0.0440 (17)
H6A0.52030.24070.87760.053*
C50.5285 (8)0.1651 (3)0.9537 (11)0.0429 (17)
O20.5191 (7)0.07461 (17)0.9997 (8)0.0588 (15)
O30.5812 (7)0.1688 (2)1.1618 (7)0.0637 (15)
C40.5010 (8)0.1162 (3)0.8755 (10)0.0479 (18)
O40.3061 (5)0.24199 (18)0.3087 (8)0.0559 (13)
C30.4450 (8)0.1084 (3)0.6641 (11)0.0485 (18)
C20.4170 (8)0.1506 (3)0.5388 (11)0.0473 (17)
H2A0.37780.14610.39940.057*
C10.4467 (7)0.1996 (2)0.6193 (10)0.0364 (15)
C70.3625 (12)0.0497 (3)0.3925 (12)0.077 (3)
H7A0.35460.01340.36770.115*
H7B0.42560.06470.32970.115*
H7C0.26420.06500.33720.115*
C80.6627 (12)0.0518 (4)1.0685 (17)0.102 (3)
H8A0.66470.02311.15410.153*
H8B0.73670.07661.14350.153*
H8C0.68460.04020.95490.153*
C90.6542 (13)0.2131 (3)1.2509 (12)0.090 (3)
H9A0.68450.21041.39490.134*
H9B0.58760.24181.20270.134*
H9C0.74140.21781.21740.134*
C100.4106 (8)0.2446 (3)0.4759 (11)0.0456 (17)
C110.4968 (7)0.3301 (2)0.4216 (10)0.0403 (15)
C120.3606 (8)0.3507 (3)0.2917 (11)0.0508 (18)
H12A0.27010.33520.27920.061*
C130.3614 (9)0.3948 (2)0.1802 (11)0.054 (2)
H13A0.27140.40880.09240.064*
C140.4971 (8)0.4173 (3)0.2018 (10)0.0514 (19)
C150.6283 (9)0.3986 (3)0.3347 (12)0.057 (2)
H15A0.71820.41540.35390.068*
C160.6286 (8)0.3538 (3)0.4433 (11)0.0515 (19)
H16B0.71930.34020.53080.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0741 (5)0.0650 (5)0.0620 (4)0.0090 (6)0.0184 (4)0.0183 (5)
N0.047 (3)0.038 (3)0.041 (3)0.004 (4)0.002 (2)0.008 (4)
O10.084 (4)0.029 (3)0.061 (3)0.007 (3)0.011 (3)0.003 (2)
C60.032 (4)0.041 (4)0.057 (5)0.002 (3)0.014 (3)0.002 (3)
C50.038 (4)0.043 (4)0.045 (4)0.002 (3)0.012 (3)0.002 (3)
O20.065 (4)0.048 (3)0.057 (4)0.001 (3)0.016 (3)0.016 (3)
O30.081 (4)0.064 (4)0.040 (3)0.013 (3)0.016 (3)0.002 (2)
C40.039 (4)0.050 (5)0.050 (4)0.000 (3)0.011 (3)0.008 (3)
O40.041 (3)0.051 (3)0.059 (3)0.006 (3)0.000 (3)0.001 (2)
C30.043 (4)0.047 (4)0.051 (5)0.001 (3)0.012 (4)0.001 (3)
C20.040 (4)0.046 (4)0.045 (4)0.001 (3)0.004 (3)0.001 (3)
C10.027 (3)0.038 (4)0.041 (4)0.002 (3)0.010 (3)0.003 (3)
C70.107 (7)0.044 (5)0.065 (5)0.008 (5)0.016 (5)0.014 (4)
C80.089 (8)0.086 (7)0.109 (8)0.022 (6)0.013 (7)0.042 (6)
C90.143 (10)0.080 (6)0.047 (5)0.047 (6)0.037 (6)0.025 (4)
C100.034 (4)0.046 (4)0.050 (5)0.005 (3)0.008 (4)0.002 (3)
C110.035 (4)0.037 (4)0.042 (4)0.003 (3)0.006 (3)0.001 (3)
C120.036 (4)0.049 (4)0.060 (4)0.001 (3)0.009 (4)0.009 (3)
C130.042 (4)0.045 (4)0.062 (5)0.004 (4)0.006 (4)0.018 (4)
C140.047 (5)0.060 (5)0.045 (4)0.006 (4)0.015 (4)0.006 (3)
C150.046 (5)0.054 (5)0.064 (5)0.006 (4)0.014 (4)0.012 (4)
C160.039 (4)0.048 (4)0.051 (4)0.008 (3)0.003 (3)0.003 (3)
Geometric parameters (Å, º) top
Br—C141.898 (7)C7—H7A0.9600
N—C101.347 (9)C7—H7B0.9600
N—C111.413 (8)C7—H7C0.9600
N—H0A0.8600C8—H8A0.9600
O1—C31.347 (8)C8—H8B0.9600
O1—C71.424 (9)C8—H8C0.9600
C6—C11.378 (9)C9—H9A0.9600
C6—C51.396 (10)C9—H9B0.9600
C6—H6A0.9300C9—H9C0.9600
C5—C41.375 (10)C11—C161.361 (9)
C5—O31.382 (8)C11—C121.394 (9)
O2—C41.368 (8)C12—C131.397 (9)
O2—C81.407 (11)C12—H12A0.9300
O3—C91.372 (9)C13—C141.381 (10)
C4—C31.414 (10)C13—H13A0.9300
O4—C101.239 (8)C14—C151.350 (10)
C3—C21.377 (9)C15—C161.398 (10)
C2—C11.383 (9)C15—H15A0.9300
C2—H2A0.9300C16—H16B0.9300
C1—C101.506 (9)
C10—N—C11125.5 (8)H8A—C8—H8B109.5
C10—N—H0A117.2O2—C8—H8C109.5
C11—N—H0A117.2H8A—C8—H8C109.5
C3—O1—C7116.6 (6)H8B—C8—H8C109.5
C1—C6—C5119.0 (7)O3—C9—H9A109.5
C1—C6—H6A120.5O3—C9—H9B109.5
C5—C6—H6A120.5H9A—C9—H9B109.5
C4—C5—O3116.0 (7)O3—C9—H9C109.5
C4—C5—C6120.3 (7)H9A—C9—H9C109.5
O3—C5—C6123.7 (7)H9B—C9—H9C109.5
C4—O2—C8115.4 (6)O4—C10—N123.4 (7)
C9—O3—C5118.3 (6)O4—C10—C1120.6 (6)
O2—C4—C5120.7 (6)N—C10—C1115.9 (6)
O2—C4—C3118.9 (6)C16—C11—C12120.0 (6)
C5—C4—C3120.3 (6)C16—C11—N118.0 (6)
O1—C3—C2125.9 (7)C12—C11—N122.0 (7)
O1—C3—C4115.2 (6)C11—C12—C13119.3 (7)
C2—C3—C4118.8 (7)C11—C12—H12A120.3
C3—C2—C1120.3 (6)C13—C12—H12A120.3
C3—C2—H2A119.8C14—C13—C12119.4 (7)
C1—C2—H2A119.8C14—C13—H13A120.3
C6—C1—C2121.2 (6)C12—C13—H13A120.3
C6—C1—C10120.4 (6)C15—C14—C13121.1 (7)
C2—C1—C10118.3 (6)C15—C14—Br119.7 (6)
O1—C7—H7A109.5C13—C14—Br119.3 (6)
O1—C7—H7B109.5C14—C15—C16119.7 (7)
H7A—C7—H7B109.5C14—C15—H15A120.1
O1—C7—H7C109.5C16—C15—H15A120.1
H7A—C7—H7C109.5C11—C16—C15120.4 (7)
H7B—C7—H7C109.5C11—C16—H16B119.8
O2—C8—H8A109.5C15—C16—H16B119.8
O2—C8—H8B109.5
C1—C6—C5—C40.2 (10)C3—C2—C1—C61.5 (10)
C1—C6—C5—O3179.0 (7)C3—C2—C1—C10178.6 (6)
C4—C5—O3—C9159.9 (8)C11—N—C10—O40.3 (13)
C6—C5—O3—C920.9 (11)C11—N—C10—C1175.8 (7)
C8—O2—C4—C591.1 (9)C6—C1—C10—O4147.3 (7)
C8—O2—C4—C392.5 (9)C2—C1—C10—O429.8 (9)
O3—C5—C4—O22.9 (10)C6—C1—C10—N36.4 (9)
C6—C5—C4—O2176.4 (6)C2—C1—C10—N146.4 (7)
O3—C5—C4—C3179.2 (7)C10—N—C11—C16145.7 (8)
C6—C5—C4—C30.0 (10)C10—N—C11—C1235.4 (12)
C7—O1—C3—C24.5 (11)C16—C11—C12—C131.8 (10)
C7—O1—C3—C4176.6 (7)N—C11—C12—C13179.3 (7)
O2—C4—C3—O15.5 (9)C11—C12—C13—C140.3 (11)
C5—C4—C3—O1178.1 (6)C12—C13—C14—C152.7 (11)
O2—C4—C3—C2175.5 (6)C12—C13—C14—Br178.1 (5)
C5—C4—C3—C20.9 (11)C13—C14—C15—C164.2 (12)
O1—C3—C2—C1177.2 (7)Br—C14—C15—C16176.7 (6)
C4—C3—C2—C11.6 (10)C12—C11—C16—C150.4 (11)
C5—C6—C1—C20.6 (10)N—C11—C16—C15179.3 (8)
C5—C6—C1—C10177.6 (6)C14—C15—C16—C112.6 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O4i0.862.192.909 (9)140
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16BrNO4
Mr366.21
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.5860 (19), 26.010 (5), 7.1390 (14)
β (°) 112.04 (3)
V3)1649.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.634, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
3194, 1616, 1206
Rint0.064
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.094, 1.00
No. of reflections1616
No. of parameters199
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.26
Absolute structureFlack (1983), 91 Friedel pairs
Absolute structure parameter0.010 (17)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O4i0.862.192.909 (9)140.3
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors thank Professor H. Q. Wang of the Center for Testing and Analysis, Nanjing University, for the collection of the X-ray diffraction data.

References

First citationBuettner, A., Seifert, K., Cottin, T., Sarli, V., Tzagkaroulaki, L., Scholz, S. & Giannis, A. (2009). Bioorg. Med. Chem. Lett. 19, 4574–4578.  Web of Science PubMed Google Scholar
First citationChoi, H., Han, B. H., Lee, T., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o1142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPellicani, R. Z., Stefanachi, A., Niso, M., Carotti, A., Leonetti, F., Nicolotti, O., Perrone, R., Berardi, F., Cellamare, S. & Colabufo, N. A. (2012). J. Med. Chem. 55, 424–436.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaeed, A. & Flörke, U. (2009). Acta Cryst. E65, o1948.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Batool, M., Shaheen, U. & Flörke, U. (2008). Acta Cryst. E64, o1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds