metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m824-m825

2-Amino-5-chloro­pyridinium cis-di­aqua­dioxalatochromate(III) sesquihydrate

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: cherif.ichraf@yahoo.fr

(Received 10 May 2012; accepted 22 May 2012; online 26 May 2012)

In the crystal structure of the title compound, (C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O, the CrIII atom adopts a distorted octa­hedral geometry being coordinated by two O atoms of two cis water mol­ecules and four O atoms from two chelating oxalate dianions. The cis-diaqua­dioxalatochromate(III) anions, 2-amino-5-chloro­pyridinium cations and uncoordinated water mol­ecules are linked into a three-dimensional supra­molecular array by O—H⋯O and N—H⋯O hydrogen-bonding inter­actions. One of the two independent lattice water molecules is situated on a twofold rotation axis.

Related literature

For structural characterization of salts containing the [Cr(C2O4)2(H2O)2] anion with various cations see: Bélombé et al. (2009[Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239-240.]); Nenwa et al. (2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]); Chérif et al. (2011[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648-m1649.]). For the building of hybrid supra­molecular networks, see: Zhang et al. (2000[Zhang, L., Cheng, P., Tang, L. F., Weng, L. H., Jiang, Z. H., Liao, D. Z., Yan, S. P. & Wang, G. L. (2000). Chem. Commun. pp. 717-718.]); Paraschiv et al. (2007[Paraschiv, C., Ferlay, S., Hosseini, M. W., Kyritsakas, N., Planeix, J. M. & Andruh, M. (2007). Rev. Roum. Chim. 52, 101-104.]). For discussion of hydrogen bonding, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O

  • Mr = 420.66

  • Orthorhombic, F d d 2

  • a = 11.376 (2) Å

  • b = 53.041 (3) Å

  • c = 10.413 (2) Å

  • V = 6283.1 (17) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 298 K

  • 0.42 × 0.32 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.792, Tmax = 0.882

  • 3854 measured reflections

  • 3414 independent reflections

  • 3180 reflections with I > 2σ(I)

  • Rint = 0.022

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.07

  • 3414 reflections

  • 243 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1608 Friedel pairs

  • Flack parameter: 0.000 (18)

Table 1
Selected bond lengths (Å)

Cr—O1 1.9618 (19)
Cr—O2 1.9907 (19)
Cr—O5 1.9547 (19)
Cr—O6 1.9642 (18)
Cr—O1W 1.9978 (18)
Cr—O2W 1.9891 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O4i 0.85 (2) 1.84 (3) 2.686 (3) 172 (3)
O1W—H12W⋯O3ii 0.85 (2) 1.94 (3) 2.769 (3) 163 (3)
O2W—H21W⋯O3iii 0.90 (2) 1.91 (2) 2.775 (3) 161 (3)
O2W—H21W⋯O4iii 0.90 (2) 2.37 (3) 2.909 (3) 118 (2)
O2W—H22W⋯O4Wiv 0.89 (2) 1.89 (3) 2.770 (3) 176 (3)
O3W—H31W⋯O2v 0.88 (2) 2.12 (4) 2.979 (3) 167 (4)
O3W—H32W⋯O1 0.88 (2) 2.03 (4) 2.861 (3) 157 (4)
O4W—H4W⋯O6 0.90 (2) 2.12 (3) 3.011 (3) 173 (3)
N1—H1A⋯O8vi 0.86 2.15 2.911 (4) 147
N1—H1B⋯O3Wiv 0.86 2.07 2.900 (4) 161
N2—H2⋯O8vi 0.86 2.13 2.900 (4) 150
N2—H2⋯O7vi 0.86 2.25 2.897 (4) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) -x+1, -y, z; (iii) [x-{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{3\over 4}}].

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

It is well known that the use of hydrogen-bonding and π-π stacking interactions is a successful way to obtain a large variety of hybrid (organic/inorganic) compounds with extended supramolecular networks through self-assembly (Zhang et al., 2000; Paraschiv et al., 2007). Following this strategy, we recently published the structure of an organic-inorganic hybrid salt: 4-aminopyridinium trans-diaquadioxalatochromate(III) monohydrate (Chérif et al., 2011). In this contribution, we report the crystal structure of an homologous salt with 2-amino-5-chloropyridinium as the organic cation.

The title compound appears to be the first member of salts of general formula (organic cation)[Cr(C2O4)2(H2O)2].xH2O where x = 0 or x = 1 in which the complex anion [Cr(C2O4)2(H2O)2]- adopts the cis geometry. The asymmetric unit is formed by a [Cr(C2O4)2(H2O)2]- anion, a (C5H6ClN2)+ cation and 1.5 water molecules [The O4W atom is located on a special position (1/2, 0, z)] (Fig. 1). In the complex anion, each chromium atom is six-coordinated in a distorted octahedral geometry with two O water molecules in cis position and four oxalato-O atoms from two chelating oxalate groups (Table 1). The four Cr—O(ox) distances range from 1.955 (2) to 1.991 (2) Å; three of them in the range 1.955 (2)–1.965 (2) Å are comparable to those reported in similar compounds (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011) but the last one, Cr—O2, is slightly longer. The Cr—O(water) distances are shorter than those observed for the quinolinium and 4-dimethylaminopyridinium compounds (Bélombé et al., 2009; Nenwa et al., 2010).

The structure can be described as segregated positive (C5H6ClN2)+ and negative [[Cr(C2O4)2(H2O)2]- + H2O] layers parallel to (010) (Fig. 2) and interconnected via N—H···O and O—H···O hydrogen bonds (Blessing, 1986; Brown, 1976). In fact, an extensive network of hydrogen bonds contributes to the stabilization of the structure. O—H···O hydrogen bonds involving all water molecules and some of the oxalato-O atoms provide the cohesion of the positive layers. The two N atoms of (C5H6ClN2)+ are hydrogen bonded to the peripheral O atoms of the oxalate groups (O8 and O7) and to the solvent water molecules (O3W) connecting the positive and negative layers (Fig. 3, Table 2).

Related literature top

For structural characterization of salts containing the [Cr(C2O4)2(H2O)2]- anion with various cations see: Bélombé et al. (2009); Nenwa et al. (2010); Chérif et al. (2011). For the building of hybrid supramolecular networks, see: Zhang et al. (2000); Paraschiv et al. (2007). For discussion of hydrogen bonding, see: Blessing (1986); Brown (1976).

Experimental top

Ethanol solutions of C5H5ClN2 (1 mmol) (10 mL) and H2C2O4.2H2O (2 mmol) (10 mL) were added to CrCl3.6H2O (1 mmol) dissolved in 10 mL of ethanol and stirred for 5 h. The resulting violet solution was left at room temperature and crystals suitable for X-ray diffraction were obtained after two weeks of slow evaporation.

Refinement top

All non hydrogen atoms were treated anisotropically. Water H atoms were initially located in a difference Fourier map and refined with restraints: d(O—H)=0.90 (2) Å and Uiso(H)=1.5Ueq(O). All other H atoms were constrained to an ideal geometry with d(C—H)=0.93 Å, d(N—H)=0.86 Å and Uiso(H)=1.2Ueq(C or N).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (C5H6ClN2)[Cr(C2O4)2(H2O)2].1.5H2O with the atom-numbering scheme. Thermal ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. Projection of (C5H6ClN2)[Cr(C2O4)2(H2O)2].1.5H2O structure along the c axis.
[Figure 3] Fig. 3. N—H···O hydrogen bonds (dashed lines) in (C5H6ClN2)[Cr(C2O4)2(H2O)2].1.5H2O showing the connection between positive and negative layers.
2-Amino-5-chloropyridinium cis-diaquadioxalatochromate(III) sesquihydrate top
Crystal data top
(C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2OF(000) = 3424
Mr = 420.66Dx = 1.779 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 25 reflections
a = 11.376 (2) Åθ = 10–15°
b = 53.041 (3) ŵ = 0.96 mm1
c = 10.413 (2) ÅT = 298 K
V = 6283.1 (17) Å3Prism, violet
Z = 160.42 × 0.32 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3180 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.0°, θmin = 2.7°
ω/2θ scansh = 141
Absorption correction: ψ scan
(North et al., 1968)
k = 167
Tmin = 0.792, Tmax = 0.882l = 1313
3854 measured reflections2 standard reflections every 120 min
3414 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0316P)2 + 13.7688P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3414 reflectionsΔρmax = 0.30 e Å3
243 parametersΔρmin = 0.31 e Å3
8 restraintsAbsolute structure: Flack (1983), 1608 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (18)
Crystal data top
(C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2OV = 6283.1 (17) Å3
Mr = 420.66Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 11.376 (2) ŵ = 0.96 mm1
b = 53.041 (3) ÅT = 298 K
c = 10.413 (2) Å0.42 × 0.32 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3180 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.792, Tmax = 0.8822 standard reflections every 120 min
3854 measured reflections intensity decay: 5%
3414 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0316P)2 + 13.7688P]
where P = (Fo2 + 2Fc2)/3
S = 1.07Δρmax = 0.30 e Å3
3414 reflectionsΔρmin = 0.31 e Å3
243 parametersAbsolute structure: Flack (1983), 1608 Friedel pairs
8 restraintsAbsolute structure parameter: 0.000 (18)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.28854 (3)0.029597 (7)0.12687 (3)0.01808 (9)
O10.45606 (16)0.02882 (3)0.17139 (17)0.0219 (4)
O20.27072 (17)0.03331 (4)0.31611 (17)0.0238 (4)
O30.57607 (15)0.02584 (3)0.34029 (18)0.0245 (4)
O40.37907 (17)0.03041 (4)0.49507 (17)0.0295 (4)
O50.29574 (17)0.06593 (3)0.09653 (16)0.0286 (4)
O60.32410 (18)0.02782 (3)0.05749 (16)0.0228 (4)
O70.3518 (3)0.05318 (4)0.2259 (2)0.0467 (6)
O80.3288 (3)0.09378 (4)0.0606 (2)0.0471 (6)
O1W0.28282 (17)0.00790 (3)0.1438 (2)0.0289 (4)
H11W0.228 (2)0.0153 (6)0.103 (3)0.043*
H12W0.313 (3)0.0148 (6)0.210 (3)0.043*
O2W0.11515 (17)0.03017 (4)0.10241 (18)0.0297 (5)
H21W0.086 (3)0.0282 (7)0.023 (2)0.045*
H22W0.075 (3)0.0209 (6)0.158 (3)0.045*
O3W0.5956 (2)0.05669 (5)0.0077 (3)0.0541 (7)
H31W0.646 (3)0.0476 (8)0.052 (4)0.081*
H32W0.572 (4)0.0474 (8)0.058 (3)0.081*
O4W0.50000.00000.2206 (3)0.0366 (7)
H4W0.448 (3)0.0093 (7)0.177 (3)0.055*
C10.4779 (2)0.02831 (4)0.2921 (2)0.0186 (5)
C20.3677 (2)0.03087 (4)0.3782 (2)0.0204 (5)
C30.3332 (2)0.04963 (5)0.1130 (3)0.0264 (5)
C40.3183 (3)0.07223 (5)0.0199 (3)0.0290 (6)
C50.1933 (3)0.15991 (6)0.3233 (3)0.0418 (8)
H50.19330.17740.32300.050*
C60.2315 (3)0.14673 (6)0.2190 (3)0.0423 (7)
C70.2297 (3)0.12042 (6)0.2198 (3)0.0438 (8)
H70.25490.11140.14820.053*
C80.1909 (3)0.10801 (6)0.3254 (3)0.0422 (8)
H80.18990.09050.32620.051*
C90.1518 (3)0.12160 (6)0.4344 (3)0.0379 (7)
N10.1138 (3)0.11041 (6)0.5402 (3)0.0565 (9)
H1A0.09130.11930.60470.068*
H1B0.11150.09420.54450.068*
N20.1552 (3)0.14686 (5)0.4280 (2)0.0394 (6)
H20.13190.15530.49380.047*
Cl0.27889 (13)0.162724 (19)0.08436 (9)0.0737 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.02037 (17)0.02121 (17)0.01267 (16)0.00028 (16)0.00167 (15)0.00091 (14)
O10.0205 (9)0.0299 (10)0.0153 (8)0.0020 (7)0.0002 (7)0.0005 (7)
O20.0199 (9)0.0364 (10)0.0152 (8)0.0007 (7)0.0009 (7)0.0006 (7)
O30.0202 (9)0.0318 (10)0.0217 (9)0.0023 (7)0.0022 (7)0.0021 (7)
O40.0292 (10)0.0449 (12)0.0144 (9)0.0055 (8)0.0002 (8)0.0022 (7)
O50.0426 (11)0.0237 (9)0.0195 (10)0.0004 (8)0.0002 (8)0.0017 (7)
O60.0323 (10)0.0215 (9)0.0147 (9)0.0017 (7)0.0003 (8)0.0004 (6)
O70.0840 (19)0.0369 (12)0.0193 (10)0.0082 (12)0.0086 (11)0.0046 (9)
O80.0819 (18)0.0244 (11)0.0352 (12)0.0008 (11)0.0065 (12)0.0055 (9)
O1W0.0335 (10)0.0240 (9)0.0290 (11)0.0057 (8)0.0117 (8)0.0064 (8)
O2W0.0230 (10)0.0415 (12)0.0247 (12)0.0020 (8)0.0070 (8)0.0010 (8)
O3W0.0566 (16)0.0432 (14)0.0626 (17)0.0086 (12)0.0283 (14)0.0134 (12)
O4W0.0340 (16)0.0394 (18)0.0365 (16)0.0055 (13)0.0000.000
C10.0209 (12)0.0191 (11)0.0160 (11)0.0019 (9)0.0000 (10)0.0007 (9)
C20.0211 (11)0.0225 (11)0.0177 (11)0.0028 (9)0.0009 (10)0.0008 (10)
C30.0349 (13)0.0254 (12)0.0189 (12)0.0019 (10)0.0013 (11)0.0022 (10)
C40.0372 (14)0.0234 (13)0.0263 (13)0.0009 (11)0.0028 (11)0.0011 (11)
C50.063 (2)0.0263 (15)0.0361 (16)0.0034 (14)0.0054 (16)0.0047 (12)
C60.062 (2)0.0331 (16)0.0318 (15)0.0050 (15)0.0083 (16)0.0007 (13)
C70.069 (2)0.0321 (15)0.0305 (15)0.0067 (15)0.0075 (16)0.0089 (13)
C80.064 (2)0.0254 (14)0.0373 (16)0.0024 (15)0.0092 (16)0.0069 (12)
C90.0452 (19)0.0375 (16)0.0311 (15)0.0007 (14)0.0043 (13)0.0044 (13)
N10.092 (3)0.0399 (16)0.0380 (16)0.0064 (16)0.0192 (17)0.0017 (13)
N20.0595 (18)0.0302 (13)0.0284 (12)0.0027 (12)0.0068 (12)0.0092 (11)
Cl0.1375 (11)0.0385 (5)0.0451 (5)0.0074 (6)0.0346 (7)0.0065 (4)
Geometric parameters (Å, º) top
Cr—O11.9618 (19)O3W—H32W0.883 (19)
Cr—O21.9907 (19)O4W—H4W0.897 (18)
Cr—O51.9547 (19)C1—C21.547 (3)
Cr—O61.9642 (18)C3—C41.551 (4)
Cr—O1W1.9978 (18)C5—N21.363 (4)
Cr—O2W1.9891 (19)C5—C61.363 (4)
O1—C11.282 (3)C5—H50.9300
O2—C21.286 (3)C6—C71.396 (4)
O3—C11.231 (3)C6—Cl1.725 (3)
O4—C21.224 (3)C7—C81.355 (5)
O5—C41.284 (3)C7—H70.9300
O6—C31.297 (3)C8—C91.417 (4)
O7—C31.209 (3)C8—H80.9300
O8—C41.225 (3)C9—N11.324 (4)
O1W—H11W0.850 (18)C9—N21.342 (4)
O1W—H12W0.850 (18)N1—H1A0.8600
O2W—H21W0.896 (18)N1—H1B0.8600
O2W—H22W0.885 (18)N2—H20.8600
O3W—H31W0.880 (19)
O5—Cr—O191.04 (8)O4—C2—C1119.3 (2)
O5—Cr—O683.15 (7)O2—C2—C1114.4 (2)
O1—Cr—O691.71 (8)O7—C3—O6125.9 (3)
O5—Cr—O2W90.33 (9)O7—C3—C4120.4 (2)
O1—Cr—O2W173.68 (8)O6—C3—C4113.7 (2)
O6—Cr—O2W94.58 (8)O8—C4—O5126.1 (3)
O5—Cr—O293.82 (8)O8—C4—C3119.7 (2)
O1—Cr—O282.36 (7)O5—C4—C3114.3 (2)
O6—Cr—O2173.31 (9)N2—C5—C6118.6 (3)
O2W—Cr—O291.39 (8)N2—C5—H5120.7
O5—Cr—O1W175.72 (9)C6—C5—H5120.7
O1—Cr—O1W89.42 (8)C5—C6—C7120.2 (3)
O6—Cr—O1W92.58 (8)C5—C6—Cl119.7 (3)
O2W—Cr—O1W89.67 (9)C7—C6—Cl120.1 (3)
O2—Cr—O1W90.46 (8)C8—C7—C6119.7 (3)
C1—O1—Cr114.86 (16)C8—C7—H7120.2
C2—O2—Cr113.60 (17)C6—C7—H7120.2
C4—O5—Cr114.69 (16)C7—C8—C9120.3 (3)
C3—O6—Cr114.13 (16)C7—C8—H8119.8
Cr—O1W—H11W116 (2)C9—C8—H8119.8
Cr—O1W—H12W119 (3)N1—C9—N2119.9 (3)
H11W—O1W—H12W120 (3)N1—C9—C8122.8 (3)
Cr—O2W—H21W119 (2)N2—C9—C8117.3 (3)
Cr—O2W—H22W115 (2)C9—N1—H1A120.0
H21W—O2W—H22W110 (3)C9—N1—H1B120.0
H31W—O3W—H32W107 (5)H1A—N1—H1B120.0
O3—C1—O1125.3 (2)C9—N2—C5123.8 (3)
O3—C1—C2120.5 (2)C9—N2—H2118.1
O1—C1—C2114.2 (2)C5—N2—H2118.1
O4—C2—O2126.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O4i0.85 (2)1.84 (3)2.686 (3)172 (3)
O1W—H12W···O3ii0.85 (2)1.94 (3)2.769 (3)163 (3)
O2W—H21W···O3iii0.90 (2)1.91 (2)2.775 (3)161 (3)
O2W—H21W···O4iii0.90 (2)2.37 (3)2.909 (3)118 (2)
O2W—H22W···O4Wiv0.89 (2)1.89 (3)2.770 (3)176 (3)
O3W—H31W···O2v0.88 (2)2.12 (4)2.979 (3)167 (4)
O3W—H32W···O10.88 (2)2.03 (4)2.861 (3)157 (4)
O4W—H4W···O60.90 (2)2.12 (3)3.011 (3)173 (3)
N1—H1A···O8vi0.862.152.911 (4)147
N1—H1B···O3Wiv0.862.072.900 (4)161
N2—H2···O8vi0.862.132.900 (4)150
N2—H2···O7vi0.862.252.897 (4)132
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y, z; (iii) x1/2, y, z1/2; (iv) x1/2, y, z+1/2; (v) x+1/2, y, z1/2; (vi) x1/4, y+1/4, z+3/4.

Experimental details

Crystal data
Chemical formula(C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O
Mr420.66
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)298
a, b, c (Å)11.376 (2), 53.041 (3), 10.413 (2)
V3)6283.1 (17)
Z16
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.42 × 0.32 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.792, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
3854, 3414, 3180
Rint0.022
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.07
No. of reflections3414
No. of parameters243
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0316P)2 + 13.7688P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.30, 0.31
Absolute structureFlack (1983), 1608 Friedel pairs
Absolute structure parameter0.000 (18)

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cr—O11.9618 (19)Cr—O61.9642 (18)
Cr—O21.9907 (19)Cr—O1W1.9978 (18)
Cr—O51.9547 (19)Cr—O2W1.9891 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O4i0.85 (2)1.84 (3)2.686 (3)172 (3)
O1W—H12W···O3ii0.85 (2)1.94 (3)2.769 (3)163 (3)
O2W—H21W···O3iii0.90 (2)1.91 (2)2.775 (3)161 (3)
O2W—H21W···O4iii0.90 (2)2.37 (3)2.909 (3)118 (2)
O2W—H22W···O4Wiv0.89 (2)1.89 (3)2.770 (3)176 (3)
O3W—H31W···O2v0.88 (2)2.12 (4)2.979 (3)167 (4)
O3W—H32W···O10.88 (2)2.03 (4)2.861 (3)157 (4)
O4W—H4W···O60.90 (2)2.12 (3)3.011 (3)173 (3)
N1—H1A···O8vi0.862.152.911 (4)147
N1—H1B···O3Wiv0.862.072.900 (4)161
N2—H2···O8vi0.862.132.900 (4)150
N2—H2···O7vi0.862.252.897 (4)132
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y, z; (iii) x1/2, y, z1/2; (iv) x1/2, y, z+1/2; (v) x+1/2, y, z1/2; (vi) x1/4, y+1/4, z+3/4.
 

References

First citationBélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239–240.  Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648–m1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationNenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationParaschiv, C., Ferlay, S., Hosseini, M. W., Kyritsakas, N., Planeix, J. M. & Andruh, M. (2007). Rev. Roum. Chim. 52, 101–104.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Cheng, P., Tang, L. F., Weng, L. H., Jiang, Z. H., Liao, D. Z., Yan, S. P. & Wang, G. L. (2000). Chem. Commun. pp. 717–718.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m824-m825
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds