Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,6-Dichloro-7-isopropyl-7H-purine

Nikola Hloušková, ${ }^{\text {a }}$ Michal Rouchal, ${ }^{\text {a }}$ Marek Nečas ${ }^{\text {b }}$ and Robert Vícha ${ }^{\text {a }}$ *

${ }^{\text {a }}$ Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín, 762 72, Czech Republic, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
Correspondence e-mail: rvicha@ft.utb.cz
Received 16 April 2012; accepted 26 April 2012
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.023 ; w R$ factor $=0.061$; data-to-parameter ratio $=12.8$.

In the title molecule, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4}$, the essentially planar imidazole and pyrimidine rings [maximum deviations of 0.0030 (15) and 0.0111 (15) \AA, respectively] make a dihedral angle of $1.32(8)^{\circ}$. In the crystal, the fused-ring systems are stacked approximately parallel to the $b c$ plane, with a centroid-centroid distance between inversion-related pyrimidine rings of 3.5189 (9) \AA.

Related literature

For the synthesis, see: Oumata et al. (2008). For biological activity of some purine derivatives, see: Legraverend \& Grierson (2006). For the selective synthesis of N7-substituted purines, see: Kotek et al. (2010). For related structures, see: Rouchal et al. (2009a,b, 2010).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4}$

$$
M_{r}=231.08
$$

Triclinic, $P \overline{1}$
$a=7.0146$ (5) \AA
$b=8.2862$ (6) \AA
$c=8.9686$ (7) \AA
$\alpha=70.499$ (7) ${ }^{\circ}$
$\beta=83.820(6)^{\circ}$
$\gamma=74.204(6)^{\circ}$

Data collection

Oxford Diffraction Xcalibur
Sapphire2 diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.933, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.061$
$S=1.05$
1656 reflections
$V=472.75(7) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.40 \times 0.40 \times 0.20 \mathrm{~mm}$

2825 measured reflections 1656 independent reflections 1419 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.011$

129 parameters

H -atom parameters constrained
$\Delta \rho_{\max }=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e} \mathrm{A}^{-3}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The financial support of this work by the Internal Founding Agency of Tomas Bata University in Zlin (project No. IGA/ FT/2012/016) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5458).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kotek, V., Chudíková, N., Tobrman, T. \& Dvořák, D. (2010). Org. Lett. 12, 5724-5727.
Legraverend, M. \& Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987-4006.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Oumata, M., Bettayeb, K., Ferandin, Y., Demange, L., Lopez-Giral, A., Goddard, M.-L., Myrianthopoulos, V., Mikros, E., Flajolet, M., Greengard, P., Meijer, L. \& Galons, H. (2008). J. Med. Chem. 51, 5229-5242.

Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.
Rouchal, M., Nečas, M., Carvalho, F. P. de \& Vícha, R. (2009a). Acta Cryst. E65, o298-o299.
Rouchal, M., Nečas, M. \& Vícha, R. (2009b). Acta Cryst. E65, o1268.
Rouchal, M., Nečas, M. \& Vícha, R. (2010). Acta Cryst. E66, o1016.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o1585 [doi:10.1107/S160053681201879X]

2,6-Dichloro-7-isopropyl-7H-purine

Nikola Hloušková, Michal Rouchal, Marek Nečas and Robert Vícha

S1. Comment

Purines represent a class of compounds with wide range of biological activities. The most of biologically active purines are di-, tri- or tetrasubstituted, usually on the $\mathrm{C}(2), \mathrm{C}(6), \mathrm{C}(8)$ and/or $\mathrm{N}(9)$ centers. Moreover, interesting biological properties were also described for some N7-substituted purines (Legraverend \& Grierson, 2006). Owing to the relatively small portions of N 7 isomer originating within the direct alkylation of purine bases, the selective synthesis of N7substituted purines was recently described (Kotek et al., 2010). The title molecule was isolated as a side product forming during the synthesis of novel 2,6,9-trisubstituted purine series.

The asymmetric unit of the title compound consists of a single purine molecule (Fig. 1). Both imidazole and pyrimidine rings are essentially planar with maximum deviations from the best plane being 0.0030 (15) \AA for C 4 (imidazole ring) and 0.0111 (15) \AA for C 3 (pyrimidine ring). The dihedral angle between the two rings is $1.32(8)^{\circ}$. In the crystal packing (Fig .2), molecules are stacked parallel to the $b c$-plane. The distance between purine ring atoms ($-x, 1-y,-z$) and best plane of adjacent purine ring (x, y, z) varies from -3.4111 (15) \AA for N 4 to -3.3728 (15) \AA for C3. We have already published the structures of some related compounds (Rouchal et al., 2009a,b; Rouchal et al., 2010).

S2. Experimental

The title compound was prepared following modified literature procedure (Oumata et al., 2008). To a well stirred solution of 2,6-dichloro-9H-purine ($4.5 \mathrm{~g}, 23.8 \mathrm{mmol}$) in DMSO $\left(50 \mathrm{~cm}^{3}\right)$, potassium carbonate $(9.9 \mathrm{~g}, 71.4 \mathrm{mmol})$ and 2iodopropane $\left(11.9 \mathrm{~cm}^{3}, 119.0 \mathrm{mmol}\right)$ were added. The reaction mixture was stirred at $288-291 \mathrm{~K}$ for 8 h . After that, the mixture was diluted with water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with ether $\left(7 \times 15 \mathrm{~cm}^{3}\right)$. Collected organic layers were washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried over sodium sulfate and evaporated in vacuo. Both N 7 and N 9 isomers were separated from the crude material using column chromatography (silicagel; petroleum ether/ethyl acetate, $1 / 1, v / v$). 2,6-Dichloro-7-i sopropyl-7H-purine was obtained as a pale yellow crystalline powder ($\mathrm{mp} 425-427 \mathrm{~K}$) in minor fraction. The crystal used for data collection was grown by spontaneous evaporation from deuterochloroform at room temperature.

S3. Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their $U_{\text {iso }}$ set to either $1.2 U_{\mathrm{eq}}$ or $1.5 U_{\mathrm{eq}}$ (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the $\mathrm{C}-\mathrm{C}$ bond.

Figure 1
The molecular structure with 50% probability ellipsoids. H-atoms are shown as small spheres at arbitrary radii.

Figure 2

Molecules of title compound stacked along the a-axis. H-atoms have been omitted for clarity.

2,6-Dichloro-7-isopropyl-7H-purine

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4}$
$M_{r}=231.08$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.0146$ (5) A
$b=8.2862$ (6) \AA
$c=8.9686(7) \AA$
$\alpha=70.499(7)^{\circ}$
$\beta=83.820(6)^{\circ}$
$\gamma=74.204(6)^{\circ}$
$V=472.75(7) \AA^{3}$
$Z=2$
$F(000)=236$
$D_{\mathrm{x}}=1.623 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 426 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2034 reflections
$\theta=3.0-27.7^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, colourless
$0.40 \times 0.40 \times 0.20 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Sapphire2
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 8.4353 pixels mm^{-1}
ω scan
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.933, T_{\max }=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.061$
$S=1.05$
1656 reflections
129 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 2825 measured reflections
> 1656 independent reflections
> 1419 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.011$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=3.5^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-9 \rightarrow 9$
> $l=-10 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0323 P)^{2}+0.0416 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.26$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.22677(6)$	$0.42378(6)$	$-0.21906(5)$	$0.02126(13)$
C12	$0.31193(6)$	$0.39565(5)$	$0.35468(5)$	$0.02020(13)$
N1	$0.2261(2)$	$0.71202(18)$	$-0.16073(15)$	$0.0172(3)$
N2	$0.26395(19)$	$0.44137(17)$	$0.05831(15)$	$0.0160(3)$
N3	$0.27132(19)$	$0.83054(17)$	$0.17303(15)$	$0.0150(3)$
N4	$0.2361(2)$	$0.96725(18)$	$-0.09060(15)$	$0.0175(3)$
C1	$0.2390(2)$	$0.5421(2)$	$-0.09346(19)$	$0.0160(4)$
C2	$0.2758(2)$	$0.5246(2)$	$0.15927(18)$	$0.0153(4)$
C3	$0.2616(2)$	$0.7041(2)$	$0.10815(18)$	$0.0139(3)$
C4	$0.2541(2)$	$0.9822(2)$	$0.04869(19)$	$0.0177(4)$
H4	0.2549	1.0914	0.0613	0.021^{*}
C5	$0.2397(2)$	$0.7924(2)$	$-0.05616(18)$	$0.0153(4)$
C6	$0.2741(2)$	$0.8107(2)$	$0.34377(18)$	$0.0165(4)$
H6	0.3683	0.6952	0.3972	0.020^{*}
C7	$0.3474(3)$	$0.9569(2)$	$0.3651(2)$	$0.0245(4)$
H7A	0.4765	0.9589	0.3115	$0.037 *$

H7B	0.3608	0.9358	0.4782	0.037^{*}
H7C	0.2525	1.0708	0.3195	0.037^{*}
C8	$0.0694(2)$	$0.8061(2)$	$0.41748(19)$	$0.0203(4)$
H8A	-0.0253	0.9186	0.3670	0.030^{*}
H8B	0.0733	0.7879	0.5310	0.030^{*}
H8C	0.0282	0.7090	0.4020	0.030^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0217(2)$	$0.0247(2)$	$0.0217(2)$	$-0.00501(18)$	$-0.00236(17)$	$-0.01289(18)$
C12	$0.0284(3)$	$0.0158(2)$	$0.0155(2)$	$-0.00685(18)$	$-0.00177(17)$	$-0.00235(17)$
N1	$0.0152(7)$	$0.0196(8)$	$0.0164(7)$	$-0.0033(6)$	$-0.0005(6)$	$-0.0062(6)$
N2	$0.0136(7)$	$0.0170(8)$	$0.0182(7)$	$-0.0040(6)$	$-0.0006(6)$	$-0.0064(6)$
N3	$0.0158(7)$	$0.0140(7)$	$0.0155(7)$	$-0.0047(6)$	$-0.0004(6)$	$-0.0041(6)$
N4	$0.0188(8)$	$0.0152(8)$	$0.0177(7)$	$-0.0045(6)$	$-0.0003(6)$	$-0.0038(6)$
C1	$0.0109(8)$	$0.0211(9)$	$0.0188(8)$	$-0.0034(7)$	$0.0003(7)$	$-0.0105(7)$
C2	$0.0109(8)$	$0.0182(9)$	$0.0152(8)$	$-0.0035(7)$	$0.0004(6)$	$-0.0036(7)$
C3	$0.0094(8)$	$0.0166(9)$	$0.0162(8)$	$-0.0030(7)$	$0.0005(6)$	$-0.0062(7)$
C4	$0.0161(9)$	$0.0137(8)$	$0.0220(9)$	$-0.0045(7)$	$-0.0003(7)$	$-0.0038(7)$
C5	$0.0103(8)$	$0.0184(9)$	$0.0162(8)$	$-0.0030(7)$	$0.0005(6)$	$-0.0050(7)$
C6	$0.0185(9)$	$0.0166(9)$	$0.0145(8)$	$-0.0036(7)$	$-0.0017(7)$	$-0.0053(7)$
C7	$0.0301(11)$	$0.0255(10)$	$0.0230(9)$	$-0.0119(8)$	$-0.0007(8)$	$-0.0104(8)$
C8	$0.0227(10)$	$0.0233(10)$	$0.0159(8)$	$-0.0066(8)$	$0.0016(7)$	$-0.0077(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

C11-C1	1.7437 (16)	C3-C5	1.414 (2)
C12-C2	1.7249 (16)	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
N1-C1	1.315 (2)	C6-C7	1.511 (2)
N1-C5	1.343 (2)	C6-C8	1.519 (2)
N2-C2	1.3289 (19)	C6-H6	1.0000
N2-C1	1.339 (2)	C7-H7A	0.9800
N3-C4	1.360 (2)	C7-H7B	0.9800
N3-C3	1.3770 (19)	C7-H7C	0.9800
N3-C6	1.486 (2)	C8-H8A	0.9800
N4-C4	1.318 (2)	C8-H8B	0.9800
N4-C5	1.371 (2)	C8-H8C	0.9800
C2-C3	1.381 (2)		
C1-N1-C5	112.46 (14)	N4-C5-C3	110.38 (14)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1$	115.85 (14)	N3-C6-C7	110.35 (13)
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 3$	105.08 (13)	N3-C6-C8	109.77 (12)
C4-N3-C6	127.26 (14)	C7-C6-C8	112.12 (14)
C3-N3-C6	127.25 (13)	N3-C6-H6	108.2
C4-N4-C5	103.55 (13)	C7-C6-H6	108.2
N1-C1-N2	130.38 (15)	C8-C6-H6	108.2
N1-C1-Cl1	116.32 (12)	C6-C7-H7A	109.5

N2- $\mathrm{C} 1-\mathrm{Cl} 1$	113.29 (12)	C6-C7-H7B	109.5
N2-C2-C3	121.08 (14)	H7A-C7- 77 -	109.5
N2-C2-Cl2	116.30 (12)	C6- $\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
C3-C2-Cl2	122.62 (13)	H7A-C7- H 7 C	109.5
N3-C3-C2	137.57 (15)	H7B-C7-H7C	109.5
N3-C3-C5	105.65 (13)	C6-C8-H8A	109.5
C2-C3-C5	116.70 (15)	C6-C8-H8B	109.5
N4-C4-N3	115.34 (15)	H8A-C8-H8B	109.5
N4-C4-H4	122.3	C6-C8-H8C	109.5
N3-C4-H4	122.3	H8A-C8-H8C	109.5
N1-C5-N4	126.13 (14)	H8B-C8-H8C	109.5
N1-C5-C3	123.49 (15)		

