

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-(6-Bromohexyloxy)-4-methyl-2*H*-chromen-2-one

Hui-Zhen Zhang, Qing-Xia Li, Ben-Tao Yin and Cheng-He Zhou*

Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China Correspondence e-mail: zhouch@swu.edu.cn

Received 17 April 2012; accepted 7 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.115; data-to-parameter ratio = 16.9.

In the title molecule, $C_{16}H_{19}BrO_3$, all non-H atoms apart from the Br atom are approximately coplanar, with a maximum deviation of 0.242 (4) Å. The C–C–C–Br torsion angle is 66.5 (4)°.

Related literature

For the pharmacological activity of coumarin compounds, see: Wu *et al.* (2009); Shi & Zhou (2011). For details of the synthesis, see: Shi *et al.* (2011). For a related structure, see: Zhang *et al.* (2011).

Experimental

Crystal data $C_{16}H_{19}BrO_3$ $M_r = 339.22$

Monoclinic, C2/c*a* = 15.681 (5) Å b = 9.540 (3) Å c = 22.104 (7) Å $\beta = 110.201 (6)^{\circ}$ $V = 3103.3 (18) \text{ Å}^{3}$ Z = 8

Data collection

Bruker APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2009)	
$T_{\min} = 0.593, T_{\max} = 0.692$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 \\ wR(F^2) &= 0.115 \\ S &= 1.01 \\ 3051 \text{ reflections} \end{split} \qquad \begin{array}{l} \text{181 parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} &= 0.48 \text{ e} \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} &= -0.53 \text{ e} \text{ Å}^{-3} \end{split}$$

Data collection: *APEX2* (Sheldrick, 2008); cell refinement: *SAINT* (Sheldrick, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was partially supported by the National Natural Science Foundation of China (No. 21172181), the Key Program of the Natural Science Foundation of Chongqing (CSTC2012jjB10026), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2012B026).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5459).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, Y. & Zhou, C.-H. (2011). Bioorg. Med. Chem. Lett. 21, 956–960.
- Shi, Y., Zhou, C.-H., Zhou, X.-D., Geng, R.-X. & Ji, Q.-G. (2011). Acta Pharm. Sin. 46, 798–810.
- Wu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236–4260.
- Zhang, Y.-Y., Shi, Y. & Zhou, C.-H. (2011). Acta Cryst. E67, 0892.

Mo $K\alpha$ radiation

 $0.22 \times 0.18 \times 0.15 \text{ mm}$

8381 measured reflections 3051 independent reflections

1921 reflections with $I > 2\sigma(I)$

 $\mu = 2.65 \text{ mm}^{-3}$

T = 296 K

 $R_{\rm int} = 0.028$

supporting information

Acta Cryst. (2012). E68, o1709 [doi:10.1107/S1600536812020442]

7-(6-Bromohexyloxy)-4-methyl-2H-chromen-2-one

Hui-Zhen Zhang, Qing-Xia Li, Ben-Tao Yin and Cheng-He Zhou

S1. Comment

Coumarin compounds are important in medicinal chemistry due to their extensive potential applications in antibacterial, antifungal, antiviral, anti-tubercular, anti-malarial, anticancer and anti-inflammatory fields (Wu, *et al.*, 2009; Shi & Zhou, 2011). Our interest is to develop novel coumarin compounds as antimicrobial agents and some structral related coumarin-triazoles have been reported as potential bioactive agents (Shi, *et al.*, 2011; Zhang, *et al.*, 2011). Herein, we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. With the exception of the Br atom, all non-hydrogen atoms are approximately co-planar with a maximum deviation of 0.242 (4)Å (C16). The C14—C15—C16—Br1 torsion angle is 66.5 (4)Å.

S2. Experimental

Compound (I) was prepared according to the procedure of Shi & Zhou (2011). Single crystals were grown by slow evaporation of a solution of (I) in CHCl₃ at room temperature.

S3. Refinement

H atoms were placed at calculated position with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene). The $U_{iso}(H)$ values were set to $1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

7-(6-Bromohexyloxy)-4-methyl-2H-chromen-2-one

Crystal data $C_{16}H_{19}BrO_3$ $M_r = 339.22$

Monoclinic, *C*2/*c* Hall symbol: -C 2yc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.6 - 22.1^{\circ}$

 $\mu = 2.65 \text{ mm}^{-1}$

Block, colorless

 $0.22 \times 0.18 \times 0.15 \text{ mm}$

T = 296 K

Cell parameters from 2005 reflections

a = 15.681 (5) Å b = 9.540 (3) Å c = 22.104 (7) Å $\beta = 110.201 (6)^{\circ}$ $V = 3103.3 (18) \text{ Å}^{3}$ Z = 8 F(000) = 1392 $D_{x} = 1.452 \text{ Mg m}^{-3}$

Data collection

Bull concernon	
Bruker APEXII CCD	8381 measured reflections
diffractometer	3051 independent reflections
Radiation source: fine-focus sealed tube	1921 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
φ and ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(SADABS; Bruker, 2009)	$k = -9 \rightarrow 11$
$T_{\min} = 0.593, T_{\max} = 0.692$	$l = -27 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.115$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
3051 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 2.7774P]$
181 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.13272 (3)	0.92653 (5)	0.02243 (2)	0.0880 (2)	
C1	0.7117 (2)	-0.1670 (3)	0.24911 (16)	0.0537 (8)	
C2	0.6618 (2)	-0.2939 (3)	0.22745 (15)	0.0545 (8)	
H2A	0.6926	-0.3787	0.2379	0.065*	
C3	0.5727 (2)	-0.2965 (3)	0.19283 (15)	0.0513 (8)	
C4	0.5235 (3)	-0.4315 (3)	0.1708 (2)	0.0741 (11)	
H4A	0.5654	-0.5082	0.1847	0.111*	
H4B	0.4973	-0.4319	0.1246	0.111*	
H4C	0.4763	-0.4412	0.1889	0.111*	

C5	0.5242 (2)	-0.1647 (3)	0.17747 (14)	0.0442 (7)
C6	0.57263 (19)	-0.0413 (3)	0.19839 (14)	0.0427 (7)
C7	0.5329 (2)	0.0882 (3)	0.18675 (15)	0.0478 (7)
H7A	0.5674	0.1687	0.2012	0.057*
C8	0.4408 (2)	0.0971 (3)	0.15309 (15)	0.0514 (8)
C9	0.3895 (2)	-0.0240 (3)	0.13091 (15)	0.0527 (8)
H9A	0.3274	-0.0181	0.1083	0.063*
C10	0.4319 (2)	-0.1512 (3)	0.14297 (15)	0.0528 (8)
H10A	0.3978	-0.2316	0.1275	0.063*
C11	0.3099 (2)	0.2471 (3)	0.11206 (17)	0.0602 (9)
H11A	0.2765	0.1966	0.1348	0.072*
H11B	0.2915	0.2118	0.0683	0.072*
C12	0.2914 (2)	0.4009 (3)	0.11200 (19)	0.0612 (9)
H12A	0.3306	0.4497	0.0932	0.073*
H12B	0.3073	0.4324	0.1563	0.073*
C13	0.1935 (2)	0.4414 (3)	0.07516 (16)	0.0557 (8)
H13A	0.1779	0.4142	0.0303	0.067*
H13B	0.1537	0.3911	0.0928	0.067*
C14	0.1785 (2)	0.5971 (3)	0.07899 (17)	0.0584 (9)
H14A	0.1936	0.6231	0.1239	0.070*
H14B	0.2199	0.6466	0.0625	0.070*
C15	0.0828 (2)	0.6447 (3)	0.04209 (17)	0.0579 (8)
H15A	0.0713	0.6332	-0.0036	0.069*
H15B	0.0407	0.5844	0.0533	0.069*
C16	0.0638 (2)	0.7941 (4)	0.05454 (19)	0.0674 (10)
H16A	0.0790	0.8079	0.1005	0.081*
H16B	-0.0006	0.8128	0.0339	0.081*
O1	0.79161 (16)	-0.1577 (2)	0.27985 (13)	0.0766 (8)
O2	0.66442 (13)	-0.0436 (2)	0.23286 (10)	0.0503 (5)
O3	0.40587 (14)	0.2292 (2)	0.14399 (12)	0.0649 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0703 (3)	0.0743 (3)	0.1032 (4)	0.0001 (2)	0.0092 (2)	0.0270 (2)
C1	0.0448 (19)	0.053 (2)	0.059 (2)	0.0053 (15)	0.0121 (16)	0.0118 (16)
C2	0.047 (2)	0.0450 (18)	0.063 (2)	0.0062 (15)	0.0084 (16)	0.0043 (15)
C3	0.050 (2)	0.0476 (18)	0.0523 (19)	0.0003 (14)	0.0122 (15)	-0.0034 (15)
C4	0.061 (2)	0.055 (2)	0.088 (3)	0.0001 (17)	0.003 (2)	-0.0139 (19)
C5	0.0413 (17)	0.0469 (17)	0.0416 (16)	0.0011 (13)	0.0107 (14)	-0.0022 (13)
C6	0.0331 (16)	0.0509 (18)	0.0416 (17)	0.0017 (13)	0.0097 (13)	0.0029 (13)
C7	0.0411 (17)	0.0485 (18)	0.0521 (19)	-0.0018 (14)	0.0141 (14)	0.0044 (14)
C8	0.0445 (18)	0.056 (2)	0.0533 (19)	0.0111 (15)	0.0160 (15)	0.0096 (15)
C9	0.0376 (17)	0.059 (2)	0.0545 (19)	0.0040 (15)	0.0065 (15)	-0.0024 (16)
C10	0.0442 (18)	0.0516 (19)	0.057 (2)	-0.0047 (14)	0.0096 (15)	-0.0085 (15)
C11	0.0435 (19)	0.064 (2)	0.070(2)	0.0135 (16)	0.0152 (16)	0.0051 (18)
C12	0.048 (2)	0.057 (2)	0.077 (2)	0.0098 (15)	0.0192 (18)	0.0057 (17)
C13	0.0495 (19)	0.057 (2)	0.058 (2)	0.0099 (15)	0.0151 (16)	0.0016 (16)

supporting information

C14	0.0501 (19)	0.055 (2)	0.065 (2)	0.0062 (15)	0.0135 (17)	0.0026 (16)
C15	0.052 (2)	0.056 (2)	0.063 (2)	0.0062 (16)	0.0154 (17)	0.0027 (16)
C16	0.057 (2)	0.065 (2)	0.080 (3)	0.0135 (17)	0.0220 (19)	0.0094 (19)
01	0.0404 (14)	0.0630 (16)	0.104 (2)	0.0007 (11)	-0.0028 (14)	0.0119 (14)
O2	0.0358 (12)	0.0467 (12)	0.0610 (14)	-0.0013 (9)	0.0070 (10)	0.0049 (10)
O3	0.0437 (13)	0.0537 (13)	0.0888 (17)	0.0102 (10)	0.0120 (12)	0.0073 (12)

Geometric parameters (Å, °)

Br1-C16	1.949 (4)	С9—Н9А	0.9300
C101	1.205 (4)	C10—H10A	0.9300
C1—O2	1.371 (4)	C11—O3	1.435 (4)
C1—C2	1.431 (4)	C11—C12	1.496 (4)
C2—C3	1.341 (4)	C11—H11A	0.9700
C2—H2A	0.9300	C11—H11B	0.9700
C3—C5	1.448 (4)	C12—C13	1.520 (4)
C3—C4	1.494 (4)	C12—H12A	0.9700
C4—H4A	0.9600	C12—H12B	0.9700
C4—H4B	0.9600	C13—C14	1.511 (4)
C4—H4C	0.9600	C13—H13A	0.9700
C5—C6	1.391 (4)	C13—H13B	0.9700
C5-C10	1.390 (4)	C14—C15	1.510 (4)
C6—O2	1.377 (3)	C14—H14A	0.9700
C6—C7	1.367 (4)	C14—H14B	0.9700
C7—C8	1.380 (4)	C15—C16	1.501 (5)
С7—Н7А	0.9300	C15—H15A	0.9700
C8—O3	1.362 (4)	C15—H15B	0.9700
C8—C9	1.397 (4)	C16—H16A	0.9700
C9—C10	1.365 (4)	C16—H16B	0.9700
O1—C1—O2	116.6 (3)	O3—C11—H11B	110.4
O1—C1—C2	126.4 (3)	C12—C11—H11B	110.4
O2—C1—C2	117.0 (3)	H11A—C11—H11B	108.6
C3—C2—C1	123.2 (3)	C11—C12—C13	114.1 (3)
C3—C2—H2A	118.4	C11—C12—H12A	108.7
C1—C2—H2A	118.4	C13—C12—H12A	108.7
C2—C3—C5	118.5 (3)	C11—C12—H12B	108.7
C2—C3—C4	121.4 (3)	C13—C12—H12B	108.7
C5—C3—C4	120.1 (3)	H12A—C12—H12B	107.6
C3—C4—H4A	109.5	C14—C13—C12	111.6 (3)
C3—C4—H4B	109.5	C14—C13—H13A	109.3
H4A—C4—H4B	109.5	C12—C13—H13A	109.3
C3—C4—H4C	109.5	C14—C13—H13B	109.3
H4A—C4—H4C	109.5	C12—C13—H13B	109.3
H4B—C4—H4C	109.5	H13A—C13—H13B	108.0
C6—C5—C10	116.7 (3)	C15—C14—C13	114.2 (3)
C6—C5—C3	118.4 (3)	C15—C14—H14A	108.7
C10—C5—C3	124.9 (3)	C13—C14—H14A	108.7

O2—C6—C7	116.1 (3)	C15—C14—H14B	108.7
O2—C6—C5	121.1 (3)	C13—C14—H14B	108.7
C7—C6—C5	122.8 (3)	H14A—C14—H14B	107.6
C8—C7—C6	118.7 (3)	C16—C15—C14	114.2 (3)
С8—С7—Н7А	120.6	C16—C15—H15A	108.7
С6—С7—Н7А	120.6	C14—C15—H15A	108.7
O3—C8—C7	115.5 (3)	C16—C15—H15B	108.7
O3—C8—C9	124.1 (3)	C14—C15—H15B	108.7
С7—С8—С9	120.5 (3)	H15A—C15—H15B	107.6
С10—С9—С8	118.9 (3)	C15—C16—Br1	112.3 (2)
С10—С9—Н9А	120.5	C15—C16—H16A	109.2
С8—С9—Н9А	120.5	Br1—C16—H16A	109.2
C9—C10—C5	122.3 (3)	C15—C16—H16B	109.2
C9—C10—H10A	118.8	Br1—C16—H16B	109.2
C5-C10-H10A	118.8	H16A—C16—H16B	107.9
O3—C11—C12	106.6 (3)	C1—O2—C6	121.8 (2)
O3—C11—H11A	110.4	C8—O3—C11	118.9 (3)
C12-C11-H11A	110.4		
O1—C1—C2—C3	-179.4 (3)	C7—C8—C9—C10	-0.1 (5)
O2—C1—C2—C3	-0.1 (5)	C8—C9—C10—C5	1.1 (5)
C1—C2—C3—C5	-1.1 (5)	C6—C5—C10—C9	-1.3 (5)
C1—C2—C3—C4	179.5 (3)	C3—C5—C10—C9	178.8 (3)
C2—C3—C5—C6	1.1 (4)	O3—C11—C12—C13	175.4 (3)
C4—C3—C5—C6	-179.5 (3)	C11—C12—C13—C14	177.9 (3)
C2-C3-C5-C10	-179.0 (3)	C12-C13-C14-C15	178.8 (3)
C4—C3—C5—C10	0.5 (5)	C13-C14-C15-C16	170.5 (3)
C10—C5—C6—O2	-179.9 (3)	C14-C15-C16-Br1	66.5 (4)
C3—C5—C6—O2	0.0 (4)	O1—C1—O2—C6	-179.3 (3)
C10—C5—C6—C7	0.5 (4)	C2-C1-O2-C6	1.3 (4)
C3—C5—C6—C7	-179.5 (3)	C7—C6—O2—C1	178.3 (3)
O2—C6—C7—C8	-179.2 (3)	C5—C6—O2—C1	-1.3 (4)
C5—C6—C7—C8	0.3 (5)	C7—C8—O3—C11	-177.1 (3)
C6—C7—C8—O3	179.3 (3)	C9—C8—O3—C11	2.7 (5)
C6—C7—C8—C9	-0.6 (5)	C12—C11—O3—C8	177.3 (3)
O3—C8—C9—C10	-179.9 (3)		