organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1621-o1622

N,N′-Bis(2,6-diiso­propyl­phen­yl)-3,6-di­methyl-1,2,4,5-tetra­zine-1,4-dicarboxamide

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 20 April 2012; accepted 29 April 2012; online 5 May 2012)

In the title mol­ecule, C30H42N6O2, the amide-substituted N atoms of the tetra­zine ring deviate from the approximate plane of the four other atoms in the ring by 0.457 (3) and 0.463 (3) Å, forming a boat conformation. The two benzene rings form a dihedral angle of 47.69 (9)°. Intra­molecular N—H⋯N and weak C—H⋯O hydrogen bonds are observed.

Related literature

For chemical reactions of 1,2,4,5-tetra­zine derivatives, see: Domingo et al. (2009[Domingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726-2735.]); Lorincz et al. (2010[Lorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196-6200.]). For their bio­logical activity, see: Devaraj et al. (2009[Devaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. (2009). Angew. Chem. Int. Ed. 48, 7013-7016.]); Eremeev et al. (1978[Eremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. 6, 753-757.], 1980[Eremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent 686336.]); Han et al. (2010[Han, H. S., Devaraj, N. K., Lee, J., Hilderbrand, S. A., Weissleder, R. & Bawendi, M. G. (2010). J. Am. Chem. Soc. 132, 7838-7839.]); Neunhoeffer (1984[Neunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 531-572. Frankfurt: Pergamon.]); Sauer, (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.]). For anti­tumor activity of 1,2,4,5-tetra­zine derivatives, see: Hu et al. (2002[Hu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877-1881.], 2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao & Hu (2005[Rao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174-3176.], 2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of the title compound, see: Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao et al. (2012[Rao, G. W., Li, Q. & Zhao, Z. G. (2012). J. Chem. Res. 36, 178-180.]); Skorianetz & Kovats (1970[Skorianetz, W. & Kovats, E. Sz. (1970). Helv. Chim. Acta, 53, 251-262.], 1971[Skorianetz, W. & Kovats, E. Sz. (1971). Helv. Chim. Acta, 54, 1922-1939.]); Sun et al. (2003[Sun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769-2775.]).

[Scheme 1]

Experimental

Crystal data
  • C30H42N6O2

  • Mr = 518.70

  • Monoclinic, P 21 /n

  • a = 9.0599 (14) Å

  • b = 33.203 (5) Å

  • c = 10.8082 (17) Å

  • β = 112.013 (2)°

  • V = 3014.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.38 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.986

  • 15158 measured reflections

  • 5304 independent reflections

  • 3918 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.154

  • S = 1.05

  • 5304 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2 0.86 2.18 2.588 (2) 109
N6—H6⋯N5 0.86 2.18 2.585 (2) 109
C1—H1B⋯O2 0.96 2.45 2.921 (3) 110
C2—H2B⋯O1 0.96 2.46 2.866 (3) 105

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tetrazine derivatives have high activity in chemical reactions (Domingo et al., 2009; Lorincz et al., 2010), and have been widely used in pesticides and medicines (Devaraj et al., 2009; Eremeev et al.,1978, 1980; Han et al., 2010; Neunhoeffer, 1984; Sauer, 1996). In a continuation of our studies of antitumor activities in 1,2,4,5-tetrazine derivatives (Hu et al., 2002, 2004; Rao & Hu, 2005, 2006), we have obtained a colourless crystalline compound, (I). The structure was confirmed by single-crystal X-ray diffraction.

The molecular structure of (I) is illustrated in Fig. 1. The N2C3 [1.274 (2) Å] and N5C6 [1.270 (2) Å] bonds are typical double bonds, and the C3—N4 [1.403 (2) Å], the N4—N5 [1.423 (2) Å], C6—N1 [1.405 (2) Å] and N1—N2 [1.424 (2) Å] bond lengths correspond to typical single bonds (Allen et al., 1987). The tetrazine ring is a 1,4-dihydro structure with the N-substituted groups at the 1,4-positions.

In (I), atoms N2, C3, N5 and C6 are approximately planar, with the largest deviation from this plane being 0.025 (1) Å. Atoms N1 and N4 deviate from this plane by -0.457 (3) and -0.463 (3) Å, respectively. The dihedral angle between the N2/C3/N5/C6 plane and the N1/N2/C6 plane is 36.75 (21)°, and between the N2/C3/N5/C6 plane and the N4/N5/C3 plane is 37.24 (12)°. The tetrazine ring has a boat conformation. The dihedral angles between the N2/C3/N5/C6 plane and the two benzene rings are 85.42 (9) and 47.28 (8)°, respectively. And the two benzene rings form a dihedral angle of 47.69 (9)°. Intramolecular N—H···N and weak C—H···O hydrogen bonds are observed.

Related literature top

For chemical reactions of 1,2,4,5-tetrazine derivatives, see: Domingo et al. (2009); Lorincz et al. (2010). For their biological activity, see: Devaraj et al. (2009); Eremeev et al. (1978, 1980); Han et al. (2010); Neunhoeffer (1984); Sauer, (1996). For antitumor activity of 1,2,4,5-tetrazine derivatives, see: Hu et al. (2002, 2004); Rao & Hu (2005, 2006). For standard bond lengths, see: Allen et al. (1987). For the synthesis of the title compound, see: Hu et al. (2004); Rao et al. (2012); Skorianetz & Kovats (1970, 1971); Sun et al. (2003).

Experimental top

The title compound was the product of the reaction of 3,6-dimethyl-1,6-dihydro-1,2,4,5-tetrazine, bis(trichloromethyl) carbonate and 2,6-diisopropylaniline according to the procedure (Hu et al., 2004; Rao et al., 2012; Skorianetz & Kovats, 1970, 1971; Sun et al., 2003). A solution of the compound in ethanol was concentrated gradually at room temperature to afford colourless blocks.

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms, and C—H distances were set to 0.96 Å for methyl H atoms, 0.93 Å for phenyl H atoms and 0.98 Å for methine H atoms, while N—H distances were set to 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
N,N'-Bis(2,6-diisopropylphenyl)-3,6-dimethyl-1,2,4,5-tetrazine- 1,4-dicarboxamide top
Crystal data top
C30H42N6O2F(000) = 1120
Mr = 518.70Dx = 1.143 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9937 reflections
a = 9.0599 (14) Åθ = 2.4–22.7°
b = 33.203 (5) ŵ = 0.07 mm1
c = 10.8082 (17) ÅT = 298 K
β = 112.013 (2)°Block, colourless
V = 3014.3 (8) Å30.38 × 0.28 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5304 independent reflections
Radiation source: fine-focus sealed tube3918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 910
Tmin = 0.973, Tmax = 0.986k = 3926
15158 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.6253P]
where P = (Fo2 + 2Fc2)/3
5304 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C30H42N6O2V = 3014.3 (8) Å3
Mr = 518.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0599 (14) ŵ = 0.07 mm1
b = 33.203 (5) ÅT = 298 K
c = 10.8082 (17) Å0.38 × 0.28 × 0.20 mm
β = 112.013 (2)°
Data collection top
Bruker SMART CCD
diffractometer
5304 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3918 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.986Rint = 0.029
15158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
5304 reflectionsΔρmin = 0.22 e Å3
352 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4285 (2)0.09149 (5)0.40846 (15)0.0630 (5)
O20.43830 (19)0.24162 (4)0.01245 (15)0.0601 (5)
N10.4915 (2)0.12554 (5)0.25237 (15)0.0409 (4)
N20.4850 (2)0.12384 (5)0.11873 (15)0.0423 (4)
N30.3522 (2)0.06577 (5)0.19903 (17)0.0458 (4)
H30.34480.07040.11860.055*
N40.5403 (2)0.19120 (5)0.16262 (15)0.0444 (4)
N50.6465 (2)0.18257 (5)0.29506 (16)0.0448 (4)
N60.6382 (2)0.25574 (5)0.21099 (16)0.0435 (4)
H60.71050.24500.27930.052*
C10.5118 (3)0.16145 (7)0.0599 (2)0.0554 (6)
H1A0.61400.17150.05290.083*
H1B0.43010.17960.11300.083*
H1C0.49470.13540.10130.083*
C20.7190 (3)0.13600 (7)0.4748 (2)0.0549 (6)
H2A0.76130.10980.46960.082*
H2B0.65800.13470.53060.082*
H2C0.80500.15480.51210.082*
C30.5067 (2)0.15814 (6)0.07548 (19)0.0394 (5)
C40.4247 (2)0.09282 (6)0.2953 (2)0.0430 (5)
C50.5345 (2)0.23148 (6)0.1203 (2)0.0435 (5)
C60.6150 (2)0.14950 (6)0.33887 (19)0.0403 (5)
C70.2869 (3)0.02908 (6)0.2285 (2)0.0441 (5)
C80.3805 (3)0.00559 (6)0.2557 (2)0.0506 (6)
C90.3178 (3)0.04044 (7)0.2882 (2)0.0628 (7)
H90.37860.06390.30840.075*
C100.1687 (3)0.04073 (8)0.2906 (3)0.0681 (7)
H100.12850.06440.31210.082*
C110.0774 (3)0.00655 (8)0.2619 (2)0.0650 (7)
H110.02450.00750.26350.078*
C120.1332 (3)0.02956 (7)0.2302 (2)0.0519 (6)
C130.6338 (2)0.29878 (6)0.19910 (19)0.0376 (5)
C140.6868 (2)0.31737 (6)0.10760 (19)0.0407 (5)
C150.6880 (3)0.35907 (6)0.1049 (2)0.0480 (5)
H150.72300.37220.04490.058*
C160.6386 (3)0.38145 (6)0.1892 (2)0.0518 (6)
H160.64010.40940.18570.062*
C170.5867 (3)0.36249 (7)0.2788 (2)0.0516 (6)
H170.55400.37790.33580.062*
C180.5826 (2)0.32085 (6)0.2854 (2)0.0433 (5)
C190.0314 (3)0.06713 (8)0.1971 (3)0.0684 (7)
H190.10050.08990.19820.082*
C200.5466 (3)0.00640 (7)0.2537 (2)0.0585 (6)
H200.56780.02030.22530.070*
C210.5165 (3)0.30030 (8)0.3790 (2)0.0559 (6)
H210.56000.27290.39440.067*
C220.7482 (3)0.29395 (7)0.0170 (2)0.0551 (6)
H220.72590.26540.02440.066*
C230.0464 (5)0.07606 (12)0.2968 (4)0.1242 (14)
H23A0.09180.10260.28090.186*
H23B0.03220.07460.38580.186*
H23C0.12870.05670.28650.186*
C240.0932 (6)0.06421 (15)0.0601 (4)0.161 (2)
H24A0.15170.08900.03800.241*
H24B0.16450.04250.05690.241*
H24C0.04350.05920.00280.241*
C250.6701 (4)0.01415 (13)0.3899 (3)0.1023 (12)
H25A0.77420.01300.38600.153*
H25B0.65350.04030.42000.153*
H25C0.66190.00590.45090.153*
C260.5627 (4)0.03696 (12)0.1547 (3)0.1049 (12)
H26A0.66540.03420.14900.157*
H26B0.48120.03230.06850.157*
H26C0.55160.06370.18420.157*
C270.3390 (3)0.29666 (12)0.3105 (3)0.0984 (11)
H27A0.29630.28350.36890.148*
H27B0.31420.28120.23030.148*
H27C0.29310.32300.28860.148*
C280.5620 (5)0.32021 (13)0.5130 (3)0.1210 (14)
H28A0.51670.30550.56660.182*
H28B0.52260.34730.50150.182*
H28C0.67580.32050.55660.182*
C290.6639 (6)0.30637 (12)0.1280 (3)0.1413 (19)
H29A0.70500.29100.18320.212*
H29B0.68180.33450.13740.212*
H29C0.55180.30150.15510.212*
C300.9261 (4)0.29894 (13)0.0624 (4)0.1227 (15)
H30A0.97690.28600.14720.184*
H30B0.95220.32710.07080.184*
H30C0.96240.28690.00190.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0907 (13)0.0552 (10)0.0486 (10)0.0230 (9)0.0324 (9)0.0020 (7)
O20.0637 (10)0.0441 (9)0.0530 (10)0.0064 (7)0.0004 (8)0.0117 (7)
N10.0535 (10)0.0331 (9)0.0360 (9)0.0093 (8)0.0167 (8)0.0007 (7)
N20.0519 (10)0.0366 (10)0.0377 (9)0.0061 (8)0.0160 (8)0.0002 (7)
N30.0583 (11)0.0367 (10)0.0427 (10)0.0117 (8)0.0194 (8)0.0012 (8)
N40.0533 (10)0.0331 (9)0.0368 (9)0.0080 (8)0.0056 (8)0.0046 (7)
N50.0497 (10)0.0364 (10)0.0389 (9)0.0066 (8)0.0058 (8)0.0025 (7)
N60.0484 (10)0.0311 (9)0.0439 (10)0.0047 (8)0.0092 (8)0.0049 (7)
C10.0665 (15)0.0546 (14)0.0455 (12)0.0111 (12)0.0216 (11)0.0033 (10)
C20.0591 (14)0.0503 (13)0.0451 (13)0.0012 (11)0.0079 (10)0.0064 (10)
C30.0403 (11)0.0351 (11)0.0401 (11)0.0057 (9)0.0119 (9)0.0019 (9)
C40.0500 (12)0.0354 (11)0.0453 (12)0.0022 (9)0.0197 (10)0.0041 (9)
C50.0455 (12)0.0361 (11)0.0447 (12)0.0050 (9)0.0122 (10)0.0053 (9)
C60.0453 (11)0.0333 (11)0.0397 (11)0.0028 (9)0.0130 (9)0.0014 (9)
C70.0515 (13)0.0359 (11)0.0423 (11)0.0139 (10)0.0146 (10)0.0008 (9)
C80.0575 (14)0.0415 (12)0.0492 (13)0.0113 (11)0.0159 (10)0.0008 (10)
C90.0733 (18)0.0395 (13)0.0695 (16)0.0113 (12)0.0198 (13)0.0071 (11)
C100.0767 (19)0.0516 (16)0.0702 (17)0.0283 (14)0.0210 (14)0.0079 (12)
C110.0538 (14)0.0732 (18)0.0658 (16)0.0249 (14)0.0200 (12)0.0025 (13)
C120.0498 (13)0.0547 (14)0.0485 (13)0.0134 (11)0.0151 (10)0.0016 (10)
C130.0372 (10)0.0303 (10)0.0420 (11)0.0039 (8)0.0109 (9)0.0016 (8)
C140.0436 (11)0.0369 (11)0.0405 (11)0.0039 (9)0.0145 (9)0.0018 (9)
C150.0536 (13)0.0393 (12)0.0529 (13)0.0037 (10)0.0220 (10)0.0080 (10)
C160.0532 (13)0.0313 (11)0.0684 (15)0.0022 (10)0.0201 (11)0.0027 (10)
C170.0533 (13)0.0421 (13)0.0603 (14)0.0061 (10)0.0225 (11)0.0027 (11)
C180.0370 (11)0.0458 (12)0.0453 (12)0.0015 (9)0.0133 (9)0.0042 (9)
C190.0544 (15)0.0691 (17)0.0824 (19)0.0005 (13)0.0263 (13)0.0042 (14)
C200.0624 (15)0.0440 (13)0.0693 (16)0.0008 (11)0.0247 (12)0.0060 (11)
C210.0591 (14)0.0615 (15)0.0561 (14)0.0047 (11)0.0320 (12)0.0100 (11)
C220.0736 (16)0.0491 (13)0.0507 (13)0.0040 (12)0.0324 (12)0.0005 (10)
C230.149 (4)0.111 (3)0.135 (3)0.018 (3)0.079 (3)0.018 (2)
C240.176 (4)0.157 (4)0.087 (3)0.081 (4)0.022 (3)0.010 (3)
C250.0665 (19)0.168 (4)0.067 (2)0.019 (2)0.0188 (15)0.009 (2)
C260.085 (2)0.139 (3)0.088 (2)0.010 (2)0.0287 (18)0.029 (2)
C270.0706 (19)0.142 (3)0.094 (2)0.0177 (19)0.0439 (17)0.028 (2)
C280.150 (3)0.166 (4)0.0577 (19)0.048 (3)0.052 (2)0.009 (2)
C290.260 (6)0.115 (3)0.0521 (18)0.059 (3)0.063 (3)0.0101 (19)
C300.090 (2)0.136 (3)0.176 (4)0.023 (2)0.089 (3)0.070 (3)
Geometric parameters (Å, º) top
O1—C41.211 (2)C16—C171.377 (3)
O2—C51.212 (2)C16—H160.9300
N1—C61.405 (2)C17—C181.386 (3)
N1—C41.405 (2)C17—H170.9300
N1—N21.424 (2)C18—C211.517 (3)
N2—C31.274 (2)C19—C241.492 (4)
N3—C41.345 (3)C19—C231.521 (4)
N3—C71.441 (2)C19—H190.9800
N3—H30.8600C20—C251.500 (4)
N4—C31.403 (2)C20—C261.521 (4)
N4—C51.408 (2)C20—H200.9800
N4—N51.423 (2)C21—C271.502 (4)
N5—C61.270 (2)C21—C281.502 (4)
N6—C51.342 (3)C21—H210.9800
N6—C131.434 (2)C22—C301.508 (4)
N6—H60.8600C22—C291.521 (4)
C1—C31.486 (3)C22—H220.9800
C1—H1A0.9600C23—H23A0.9600
C1—H1B0.9600C23—H23B0.9600
C1—H1C0.9600C23—H23C0.9600
C2—C61.487 (3)C24—H24A0.9600
C2—H2A0.9600C24—H24B0.9600
C2—H2B0.9600C24—H24C0.9600
C2—H2C0.9600C25—H25A0.9600
C7—C81.394 (3)C25—H25B0.9600
C7—C121.400 (3)C25—H25C0.9600
C8—C91.390 (3)C26—H26A0.9600
C8—C201.514 (3)C26—H26B0.9600
C9—C101.361 (4)C26—H26C0.9600
C9—H90.9300C27—H27A0.9600
C10—C111.370 (4)C27—H27B0.9600
C10—H100.9300C27—H27C0.9600
C11—C121.393 (3)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C12—C191.512 (3)C28—H28C0.9600
C13—C141.395 (3)C29—H29A0.9600
C13—C181.395 (3)C29—H29B0.9600
C14—C151.385 (3)C29—H29C0.9600
C14—C221.511 (3)C30—H30A0.9600
C15—C161.374 (3)C30—H30B0.9600
C15—H150.9300C30—H30C0.9600
C6—N1—C4123.52 (16)C13—C18—C21121.51 (19)
C6—N1—N2114.68 (15)C24—C19—C12110.4 (2)
C4—N1—N2116.42 (15)C24—C19—C23109.7 (3)
C3—N2—N1112.52 (16)C12—C19—C23113.4 (3)
C4—N3—C7121.03 (17)C24—C19—H19107.7
C4—N3—H3119.5C12—C19—H19107.7
C7—N3—H3119.5C23—C19—H19107.7
C3—N4—C5123.54 (16)C25—C20—C8111.7 (2)
C3—N4—N5114.38 (16)C25—C20—C26110.1 (3)
C5—N4—N5116.55 (15)C8—C20—C26112.3 (2)
C6—N5—N4112.80 (16)C25—C20—H20107.5
C5—N6—C13122.97 (16)C8—C20—H20107.5
C5—N6—H6118.5C26—C20—H20107.5
C13—N6—H6118.5C27—C21—C28111.5 (3)
C3—C1—H1A109.5C27—C21—C18108.96 (19)
C3—C1—H1B109.5C28—C21—C18114.2 (2)
H1A—C1—H1B109.5C27—C21—H21107.3
C3—C1—H1C109.5C28—C21—H21107.3
H1A—C1—H1C109.5C18—C21—H21107.3
H1B—C1—H1C109.5C30—C22—C14109.9 (2)
C6—C2—H2A109.5C30—C22—C29111.6 (3)
C6—C2—H2B109.5C14—C22—C29111.3 (2)
H2A—C2—H2B109.5C30—C22—H22107.9
C6—C2—H2C109.5C14—C22—H22107.9
H2A—C2—H2C109.5C29—C22—H22107.9
H2B—C2—H2C109.5C19—C23—H23A109.5
N2—C3—N4118.53 (17)C19—C23—H23B109.5
N2—C3—C1119.58 (18)H23A—C23—H23B109.5
N4—C3—C1121.60 (17)C19—C23—H23C109.5
O1—C4—N3125.31 (19)H23A—C23—H23C109.5
O1—C4—N1120.60 (18)H23B—C23—H23C109.5
N3—C4—N1114.00 (18)C19—C24—H24A109.5
O2—C5—N6126.14 (19)C19—C24—H24B109.5
O2—C5—N4120.12 (18)H24A—C24—H24B109.5
N6—C5—N4113.69 (17)C19—C24—H24C109.5
N5—C6—N1118.39 (17)H24A—C24—H24C109.5
N5—C6—C2118.78 (18)H24B—C24—H24C109.5
N1—C6—C2122.60 (17)C20—C25—H25A109.5
C8—C7—C12122.39 (19)C20—C25—H25B109.5
C8—C7—N3118.50 (19)H25A—C25—H25B109.5
C12—C7—N3119.11 (19)C20—C25—H25C109.5
C9—C8—C7117.9 (2)H25A—C25—H25C109.5
C9—C8—C20119.4 (2)H25B—C25—H25C109.5
C7—C8—C20122.74 (19)C20—C26—H26A109.5
C10—C9—C8120.9 (2)C20—C26—H26B109.5
C10—C9—H9119.6H26A—C26—H26B109.5
C8—C9—H9119.6C20—C26—H26C109.5
C9—C10—C11120.6 (2)H26A—C26—H26C109.5
C9—C10—H10119.7H26B—C26—H26C109.5
C11—C10—H10119.7C21—C27—H27A109.5
C10—C11—C12121.7 (2)C21—C27—H27B109.5
C10—C11—H11119.2H27A—C27—H27B109.5
C12—C11—H11119.2C21—C27—H27C109.5
C11—C12—C7116.6 (2)H27A—C27—H27C109.5
C11—C12—C19121.5 (2)H27B—C27—H27C109.5
C7—C12—C19121.8 (2)C21—C28—H28A109.5
C14—C13—C18122.05 (18)C21—C28—H28B109.5
C14—C13—N6119.95 (17)H28A—C28—H28B109.5
C18—C13—N6117.94 (17)C21—C28—H28C109.5
C15—C14—C13117.70 (19)H28A—C28—H28C109.5
C15—C14—C22119.55 (18)H28B—C28—H28C109.5
C13—C14—C22122.70 (18)C22—C29—H29A109.5
C16—C15—C14121.3 (2)C22—C29—H29B109.5
C16—C15—H15119.3H29A—C29—H29B109.5
C14—C15—H15119.3C22—C29—H29C109.5
C15—C16—C17120.0 (2)H29A—C29—H29C109.5
C15—C16—H16120.0H29B—C29—H29C109.5
C17—C16—H16120.0C22—C30—H30A109.5
C16—C17—C18121.0 (2)C22—C30—H30B109.5
C16—C17—H17119.5H30A—C30—H30B109.5
C18—C17—H17119.5C22—C30—H30C109.5
C17—C18—C13117.86 (19)H30A—C30—H30C109.5
C17—C18—C21120.6 (2)H30B—C30—H30C109.5
C6—N1—N2—C342.8 (2)C10—C11—C12—C70.4 (3)
C4—N1—N2—C3162.07 (18)C10—C11—C12—C19179.4 (2)
C3—N4—N5—C643.5 (2)C8—C7—C12—C110.5 (3)
C5—N4—N5—C6161.71 (19)N3—C7—C12—C11178.75 (19)
N1—N2—C3—N42.9 (3)C8—C7—C12—C19178.5 (2)
N1—N2—C3—C1176.89 (17)N3—C7—C12—C192.3 (3)
C5—N4—C3—N2166.59 (19)C5—N6—C13—C1474.7 (3)
N5—N4—C3—N240.6 (3)C5—N6—C13—C18108.2 (2)
C5—N4—C3—C119.6 (3)C18—C13—C14—C150.3 (3)
N5—N4—C3—C1133.2 (2)N6—C13—C14—C15176.64 (17)
C7—N3—C4—O17.7 (3)C18—C13—C14—C22177.70 (19)
C7—N3—C4—N1175.78 (18)N6—C13—C14—C220.8 (3)
C6—N1—C4—O125.7 (3)C13—C14—C15—C160.1 (3)
N2—N1—C4—O1178.37 (19)C22—C14—C15—C16177.6 (2)
C6—N1—C4—N3157.65 (18)C14—C15—C16—C170.1 (3)
N2—N1—C4—N35.0 (3)C15—C16—C17—C180.3 (3)
C13—N6—C5—O28.8 (3)C16—C17—C18—C130.5 (3)
C13—N6—C5—N4168.69 (17)C16—C17—C18—C21176.5 (2)
C3—N4—C5—O233.3 (3)C14—C13—C18—C170.5 (3)
N5—N4—C5—O2174.45 (19)N6—C13—C18—C17176.52 (18)
C3—N4—C5—N6149.00 (19)C14—C13—C18—C21176.49 (18)
N5—N4—C5—N63.2 (3)N6—C13—C18—C216.5 (3)
N4—N5—C6—N13.7 (3)C11—C12—C19—C2475.3 (4)
N4—N5—C6—C2178.32 (18)C7—C12—C19—C24103.7 (3)
C4—N1—C6—N5166.90 (19)C11—C12—C19—C2348.3 (4)
N2—N1—C6—N540.0 (3)C7—C12—C19—C23132.8 (3)
C4—N1—C6—C218.7 (3)C9—C8—C20—C2564.7 (3)
N2—N1—C6—C2134.4 (2)C7—C8—C20—C25114.2 (3)
C4—N3—C7—C894.6 (2)C9—C8—C20—C2659.5 (3)
C4—N3—C7—C1284.7 (2)C7—C8—C20—C26121.6 (3)
C12—C7—C8—C91.3 (3)C17—C18—C21—C2785.4 (3)
N3—C7—C8—C9177.98 (19)C13—C18—C21—C2791.5 (3)
C12—C7—C8—C20179.8 (2)C17—C18—C21—C2840.1 (3)
N3—C7—C8—C200.9 (3)C13—C18—C21—C28143.1 (3)
C7—C8—C9—C101.2 (3)C15—C14—C22—C3069.4 (3)
C20—C8—C9—C10179.9 (2)C13—C14—C22—C30107.9 (3)
C8—C9—C10—C110.3 (4)C15—C14—C22—C2954.8 (3)
C9—C10—C11—C120.5 (4)C13—C14—C22—C29127.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.182.588 (2)109
N6—H6···N50.862.182.585 (2)109
C1—H1B···O20.962.452.921 (3)110
C2—H2B···O10.962.462.866 (3)105

Experimental details

Crystal data
Chemical formulaC30H42N6O2
Mr518.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.0599 (14), 33.203 (5), 10.8082 (17)
β (°) 112.013 (2)
V3)3014.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.38 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.973, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
15158, 5304, 3918
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.154, 1.05
No. of reflections5304
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.182.588 (2)108.7
N6—H6···N50.862.182.585 (2)108.9
C1—H1B···O20.962.452.921 (3)109.9
C2—H2B···O10.962.462.866 (3)105.0
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y2090985) and the Program of Education Department of Zhejiang Province of China (Y200803060) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. (2009). Angew. Chem. Int. Ed. 48, 7013–7016.  Web of Science CrossRef CAS Google Scholar
First citationDomingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726–2735.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent 686336.  Google Scholar
First citationEremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. 6, 753–757.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHan, H. S., Devaraj, N. K., Lee, J., Hilderbrand, S. A., Weissleder, R. & Bawendi, M. G. (2010). J. Am. Chem. Soc. 132, 7838–7839.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877–1881.  CAS Google Scholar
First citationLorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196–6200.  Web of Science CAS PubMed Google Scholar
First citationNeunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 531–572. Frankfurt: Pergamon.  Google Scholar
First citationRao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174–3176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W., Li, Q. & Zhao, Z. G. (2012). J. Chem. Res. 36, 178–180.  Web of Science CrossRef CAS Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkorianetz, W. & Kovats, E. Sz. (1970). Helv. Chim. Acta, 53, 251–262.  CrossRef CAS Web of Science Google Scholar
First citationSkorianetz, W. & Kovats, E. Sz. (1971). Helv. Chim. Acta, 54, 1922–1939.  CrossRef CAS Web of Science Google Scholar
First citationSun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769–2775.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1621-o1622
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds