organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1714-o1715

2-Amino-3-carb­­oxy­pyrazin-1-ium perchlorate bis­­(2-amino­pyrazin-1-ium-3-carboxyl­ate) monohydrate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux (LCATM), Université d'Oum El Bouaghi 04000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 30 April 2012; accepted 9 May 2012; online 12 May 2012)

The asymmetric unit of the title compound, C5H6N3O2+·ClO4·2C5H5N3O2·H2O, comprises two symmetry-independent zwitterions, one cation, one perchlorate anion and one water mol­ecule. In the crystal, the three different types of organic entities are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming undulating sheets parallel to (1-10). These sheets are in turn connected by O—H⋯N and O—H⋯O hydrogen bonds involving perchlorate anions and water mol­ecules, forming a three-dimensional network. Intra­molecular N—H⋯O and weak inter­molecular C—H⋯O hydrogen bonds are also present.

Related literature

For crystal structures of hybrid compounds obtained from 3-amino-pyrazine 2-carb­oxy­lic acid, see: Berrah et al. (2011a[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525-o526.],b[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677-o678.],c[Berrah, F., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o1409-o1410.]). For related perchlorate compounds, see: Bendjeddou et al. (2003[Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574-o576.]); Berrah et al. (2012[Berrah, F., Bouacida, S., Anana, H. & Roisnel, T. (2012). Acta Cryst. E68, o1601-o1602.]); Toumi Akriche et al.(2010[Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·ClO4·2C5H5N3O2·H2O

  • Mr = 535.83

  • Triclinic, [P \overline 1]

  • a = 8.1332 (14) Å

  • b = 11.816 (2) Å

  • c = 11.850 (2) Å

  • α = 95.696 (9)°

  • β = 108.148 (8)°

  • γ = 102.416 (8)°

  • V = 1039.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 150 K

  • 0.46 × 0.27 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.855, Tmax = 0.955

  • 15575 measured reflections

  • 4705 independent reflections

  • 4165 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.1

  • S = 1.04

  • 4705 reflections

  • 332 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O1W 0.82 1.71 2.5258 (18) 172
O1W—H1W⋯O1Bi 0.88 (2) 1.92 (2) 2.7873 (19) 169 (2)
O1W—H2W⋯O2 0.84 (2) 1.99 (2) 2.8176 (19) 172 (2)
O1W—H1W⋯N3Bi 0.88 (2) 2.56 (2) 3.052 (2) 115.8 (17)
N2B—H2B⋯O1C 0.86 1.92 2.6935 (18) 149
N1C—H11C⋯O2Bii 0.86 2.11 2.958 (2) 170
N2C—H2C⋯O1Bii 0.86 1.76 2.6156 (19) 171
N2A—H2A⋯O2Ciii 0.86 1.80 2.6536 (17) 175
N1A—H11A⋯O1Ciii 0.86 2.14 2.9340 (19) 153
N1B—H11B⋯O1A 0.86 2.26 2.916 (2) 133
N1B—H11B⋯O1C 0.86 2.44 3.087 (2) 133
N1B—H12B⋯O2B 0.86 2.21 2.814 (2) 127
N1A—H12A⋯O2A 0.86 2.09 2.7038 (19) 128
N1C—H12C⋯O2C 0.86 2.06 2.6734 (19) 128
N2B—H2B⋯N3C 0.86 2.41 3.058 (2) 132
N1B—H12B⋯N3A 0.86 2.41 3.035 (2) 130
N1A—H12A⋯N3Biv 0.86 2.44 3.152 (2) 140
C4B—H4B⋯O1v 0.93 2.41 3.267 (2) 153
C4C—H4C⋯O3vi 0.93 2.45 3.350 (2) 162
C5A—H5A⋯O2B 0.93 2.58 3.336 (2) 138
C5B—H5B⋯O2v 0.93 2.48 3.145 (2) 129
C5B—H5B⋯O2Av 0.93 2.48 3.164 (2) 130
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y+1, z; (iii) -x, -y, -z; (iv) x, y, z-1; (v) x, y, z+1; (vi) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al. 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-heterocyclic compounds such as pyrazine and its derivatives encompass a variety of potential hydrogen donors and acceptors which makes them interesting units to built new edifices involving original hydrogen-bonding schemes. As a continuation of our systematic studies concerning the synthesis and structural characterization of organic-inorganic hybrids and in attempts to establish a relationship between the nature of the anion used and hydrogen-bonding pattern encountered in these structures, we report herein the crystal structure of the compound 2-Amino-3-carboxypyrazin-1-ium perchlorate bis(2-aminopyrazin-1-ium 3-carboxylate) monohydrate. Related compounds obtained with nitrate, sulfate and dihydrogen phosphate anions have been reported (Berrah et al. 2011a,b,c).

The asymmetric unit, shown in Fig.1, comprises two symmetry independent zwitterions (B and C), one cation (A), one perchlorate anion and one water molecule. Bonds distances and angles in the three organic entities are comparable to that encountered in similar structures (Berrah et al. 2011a,b,c) except for the C—O distances in the carboxylic group: C—O distances are 1.2524 (19) and 1.2553 (19) Å in (B) and 1.2418 (19) and 1.2631 (19) Å in (C), due to the transfer of the carboxylic group proton to the hetero-ring nitrogen atom. Perchlorate anions present quite regular tetrahedral geometry (Cl—O distances range from 1.4279 (13) to 1.4528 (12) Å and angles from 108.67 (8) to 110.11 (9)°) and are comparable to that reported in the literature (Bendjeddou et al. 2003; Berrah et al.2012; Toumi Akriche et al.2010).

All components of the structure are involved in an interesting hydrogen bond system in which all potential donors and acceptors are implicated: the H2O molecule, the two 2-Aminopyrazin-1-ium 3-carboxylate zwitterions (B and C) and the 2-Amino-3-carboxypyrazin-1-ium cation (A) act as both hydrogen bond donors and acceptors (table 1). An extensive H-bonding system between the three different organic entities, allows development of wave-like extended chains which intersect to form double-sheets parallel to (110) (Fig.2 and Fig.3). Perchlorate anions and water molecules connect these double-sheets to generate a three-dimensional network (Fig.2 and Fig.3).

Related literature top

For crystal structures of hybrid compounds obtained from 3-amino-pyrazine 2-carboxylic acid, see: Berrah et al. (2011a,b,c). For related perchlorate compounds, see: Bendjeddou et al. (2003); Berrah et al. (2012); Toumi Akriche et al.(2010).

Experimental top

The title compound was obtained by reacting 3-amino-pyrazine 2-carboxylic acid with some excess of perchloric acid in aqueous solution. Slow evaporation allows growth of well formed colourless prismatic crystals.

Refinement top

All H atoms were located in differnce Fourier maps. The water molecule H atoms were refined with Uiso(H) = 1.5Ueq(O) while all the remaining H atoms were introduced in calculated positions and treated as riding on their parent atoms (C,N or O) with C—H = 0.93 Å,N—H = 0.86 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial view of one extended double-sheet showing wave-like chains and H-bonds between the different components. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view of part of the packing of (I) showing how double-sheets are linked via perchlorate anions and water molecules. Hydrogen bonds are shown as dashed lines.
2-Amino-3-carboxypyrazin-1-ium perchlorate bis(2-aminopyrazin-1-ium-3-carboxylate) monohydrate top
Crystal data top
C5H6N3O2+·ClO4·2C5H5N3O2·H2OZ = 2
Mr = 535.83F(000) = 552
Triclinic, P1Dx = 1.712 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1332 (14) ÅCell parameters from 7298 reflections
b = 11.816 (2) Åθ = 2.7–27.4°
c = 11.850 (2) ŵ = 0.27 mm1
α = 95.696 (9)°T = 150 K
β = 108.148 (8)°Prism, colourless
γ = 102.416 (8)°0.46 × 0.27 × 0.17 mm
V = 1039.8 (3) Å3
Data collection top
Bruker APEXII
diffractometer
4165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1010
Tmin = 0.855, Tmax = 0.955k = 1515
15575 measured reflectionsl = 1415
4705 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.1H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.495P]
where P = (Fo2 + 2Fc2)/3
4705 reflections(Δ/σ)max = 0.001
332 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C5H6N3O2+·ClO4·2C5H5N3O2·H2Oγ = 102.416 (8)°
Mr = 535.83V = 1039.8 (3) Å3
Triclinic, P1Z = 2
a = 8.1332 (14) ÅMo Kα radiation
b = 11.816 (2) ŵ = 0.27 mm1
c = 11.850 (2) ÅT = 150 K
α = 95.696 (9)°0.46 × 0.27 × 0.17 mm
β = 108.148 (8)°
Data collection top
Bruker APEXII
diffractometer
4705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4165 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.955Rint = 0.057
15575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.1H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
4705 reflectionsΔρmin = 0.48 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69001 (5)0.36663 (3)0.00929 (3)0.01747 (11)
O30.68759 (17)0.43096 (11)0.09976 (11)0.0282 (3)
C2A0.07122 (19)0.13735 (13)0.05029 (13)0.0142 (3)
O20.62112 (16)0.24144 (10)0.01437 (11)0.0248 (3)
O1A0.32377 (15)0.00920 (10)0.18281 (10)0.0214 (3)
H1A0.40490.06610.18690.032*
O1W0.55592 (16)0.19617 (10)0.19895 (12)0.0222 (3)
H1W0.663 (3)0.2094 (19)0.254 (2)0.033*
H2W0.566 (3)0.205 (2)0.132 (2)0.033*
O2C0.40678 (15)0.39784 (9)0.29630 (10)0.0185 (2)
N2C0.88489 (17)0.53957 (11)0.58581 (12)0.0170 (3)
H2C0.96510.60130.5880.02*
O10.57705 (18)0.40133 (11)0.11220 (11)0.0298 (3)
N3C0.63598 (17)0.34284 (12)0.58168 (12)0.0176 (3)
O1B0.11825 (16)0.26089 (10)0.61036 (11)0.0235 (3)
C5B0.3196 (2)0.08607 (14)0.75159 (14)0.0183 (3)
H5B0.34260.11230.8330.022*
C5C0.7831 (2)0.38892 (15)0.68069 (15)0.0197 (3)
H5C0.79980.35230.74780.024*
O40.86893 (17)0.38880 (12)0.01070 (14)0.0359 (3)
N1A0.01642 (18)0.16806 (12)0.17083 (12)0.0212 (3)
H11A0.09090.20620.23980.025*
H12A0.07480.11320.16710.025*
N2B0.34558 (17)0.12346 (11)0.56691 (12)0.0176 (3)
H2B0.38520.17150.52570.021*
C1C0.4396 (2)0.34074 (13)0.38055 (14)0.0156 (3)
C4B0.3817 (2)0.16113 (14)0.68530 (14)0.0186 (3)
H4B0.44850.23780.72140.022*
C2C0.61173 (19)0.39387 (13)0.48635 (14)0.0147 (3)
C3C0.7406 (2)0.49782 (13)0.48389 (14)0.0150 (3)
O2B0.00600 (16)0.22021 (10)0.42749 (10)0.0239 (3)
O1C0.34056 (15)0.24560 (10)0.38619 (10)0.0219 (3)
C3A0.04216 (19)0.19367 (13)0.07064 (14)0.0150 (3)
N2A0.18714 (16)0.28048 (11)0.08043 (11)0.0152 (3)
H2A0.26020.31460.15130.018*
N1C0.72791 (18)0.55293 (12)0.39109 (12)0.0199 (3)
H11C0.81060.61430.39610.024*
H12C0.63690.52740.32570.024*
C5A0.1068 (2)0.26064 (14)0.12868 (14)0.0178 (3)
H5A0.12910.28570.19570.021*
N3B0.22488 (17)0.02635 (12)0.70059 (12)0.0173 (3)
C1B0.0919 (2)0.19231 (14)0.53518 (14)0.0172 (3)
O2A0.25539 (16)0.00695 (10)0.01483 (10)0.0239 (3)
C2B0.1914 (2)0.06368 (13)0.58521 (14)0.0156 (3)
N3A0.03789 (17)0.17121 (11)0.14528 (12)0.0164 (3)
C1A0.2274 (2)0.03376 (13)0.06933 (14)0.0154 (3)
C4C0.9077 (2)0.48821 (15)0.68396 (15)0.0200 (3)
H4C1.00730.520.75320.024*
N1B0.2181 (2)0.01866 (13)0.39418 (13)0.0263 (3)
H11B0.25910.03110.35490.032*
H12B0.15690.08880.35770.032*
C3B0.2491 (2)0.01272 (14)0.51060 (14)0.0170 (3)
C4A0.2213 (2)0.31536 (13)0.01601 (14)0.0168 (3)
H4A0.32160.3760.00630.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01646 (19)0.01438 (19)0.0198 (2)0.00210 (14)0.00545 (15)0.00173 (14)
O30.0371 (7)0.0237 (6)0.0195 (6)0.0060 (5)0.0069 (5)0.0027 (5)
C2A0.0137 (7)0.0142 (7)0.0136 (7)0.0036 (6)0.0033 (6)0.0016 (6)
O20.0290 (6)0.0143 (6)0.0267 (7)0.0020 (5)0.0092 (5)0.0016 (5)
O1A0.0193 (6)0.0231 (6)0.0145 (6)0.0055 (4)0.0039 (4)0.0011 (5)
O1W0.0196 (6)0.0226 (6)0.0202 (6)0.0005 (5)0.0047 (5)0.0046 (5)
O2C0.0207 (6)0.0158 (5)0.0141 (5)0.0003 (4)0.0019 (4)0.0031 (4)
N2C0.0142 (6)0.0147 (6)0.0187 (7)0.0012 (5)0.0050 (5)0.0012 (5)
O10.0366 (7)0.0292 (7)0.0208 (6)0.0125 (6)0.0033 (5)0.0057 (5)
N3C0.0171 (6)0.0169 (7)0.0171 (7)0.0018 (5)0.0052 (5)0.0038 (5)
O1B0.0256 (6)0.0160 (6)0.0206 (6)0.0040 (5)0.0023 (5)0.0050 (5)
C5B0.0214 (8)0.0167 (8)0.0134 (7)0.0013 (6)0.0044 (6)0.0004 (6)
C5C0.0184 (8)0.0233 (8)0.0156 (8)0.0037 (6)0.0036 (6)0.0062 (6)
O40.0208 (6)0.0277 (7)0.0630 (10)0.0046 (5)0.0204 (7)0.0096 (7)
N1A0.0205 (7)0.0232 (7)0.0126 (7)0.0041 (5)0.0026 (5)0.0016 (5)
N2B0.0201 (7)0.0144 (6)0.0180 (7)0.0002 (5)0.0084 (5)0.0058 (5)
C1C0.0167 (7)0.0146 (7)0.0137 (7)0.0004 (6)0.0057 (6)0.0006 (6)
C4B0.0206 (8)0.0136 (7)0.0171 (8)0.0005 (6)0.0045 (6)0.0011 (6)
C2C0.0151 (7)0.0126 (7)0.0154 (7)0.0011 (6)0.0058 (6)0.0015 (6)
C3C0.0156 (7)0.0131 (7)0.0155 (7)0.0017 (6)0.0063 (6)0.0003 (6)
O2B0.0263 (6)0.0210 (6)0.0156 (6)0.0051 (5)0.0031 (5)0.0006 (5)
O1C0.0221 (6)0.0186 (6)0.0165 (6)0.0066 (4)0.0029 (5)0.0036 (4)
C3A0.0148 (7)0.0153 (7)0.0147 (7)0.0046 (6)0.0043 (6)0.0022 (6)
N2A0.0139 (6)0.0154 (6)0.0127 (6)0.0018 (5)0.0016 (5)0.0007 (5)
N1C0.0192 (7)0.0173 (7)0.0176 (7)0.0042 (5)0.0040 (5)0.0051 (5)
C5A0.0190 (7)0.0193 (8)0.0152 (8)0.0019 (6)0.0080 (6)0.0035 (6)
N3B0.0182 (6)0.0166 (7)0.0153 (7)0.0011 (5)0.0053 (5)0.0034 (5)
C1B0.0157 (7)0.0164 (8)0.0172 (8)0.0014 (6)0.0070 (6)0.0009 (6)
O2A0.0270 (6)0.0226 (6)0.0164 (6)0.0036 (5)0.0056 (5)0.0055 (5)
C2B0.0148 (7)0.0155 (7)0.0142 (7)0.0002 (6)0.0043 (6)0.0020 (6)
N3A0.0170 (6)0.0171 (7)0.0142 (6)0.0032 (5)0.0053 (5)0.0022 (5)
C1A0.0152 (7)0.0150 (7)0.0143 (7)0.0035 (6)0.0036 (6)0.0003 (6)
C4C0.0173 (7)0.0226 (8)0.0161 (8)0.0035 (6)0.0025 (6)0.0002 (6)
N1B0.0368 (8)0.0218 (7)0.0159 (7)0.0043 (6)0.0116 (6)0.0017 (6)
C3B0.0166 (7)0.0163 (8)0.0157 (8)0.0008 (6)0.0048 (6)0.0027 (6)
C4A0.0150 (7)0.0149 (7)0.0202 (8)0.0016 (6)0.0072 (6)0.0029 (6)
Geometric parameters (Å, º) top
Cl1—O41.4279 (13)N2B—C4B1.347 (2)
Cl1—O11.4362 (13)N2B—C3B1.354 (2)
Cl1—O31.4406 (13)N2B—H2B0.86
Cl1—O21.4528 (12)C1C—O1C1.2553 (19)
C2A—N3A1.317 (2)C1C—C2C1.516 (2)
C2A—C3A1.439 (2)C4B—H4B0.93
C2A—C1A1.504 (2)C2C—C3C1.442 (2)
O1A—C1A1.3103 (18)C3C—N1C1.321 (2)
O1A—H1A0.82O2B—C1B1.2418 (19)
O1W—H1W0.88 (2)C3A—N2A1.352 (2)
O1W—H2W0.84 (2)N2A—C4A1.340 (2)
O2C—C1C1.2524 (19)N2A—H2A0.86
N2C—C4C1.345 (2)N1C—H11C0.86
N2C—C3C1.353 (2)N1C—H12C0.86
N2C—H2C0.86C5A—N3A1.349 (2)
N3C—C2C1.314 (2)C5A—C4A1.365 (2)
N3C—C5C1.350 (2)C5A—H5A0.93
O1B—C1B1.2631 (19)N3B—C2B1.317 (2)
C5B—N3B1.354 (2)C1B—C2B1.520 (2)
C5B—C4B1.361 (2)O2A—C1A1.2112 (19)
C5B—H5B0.93C2B—C3B1.432 (2)
C5C—C4C1.364 (2)C4C—H4C0.93
C5C—H5C0.93N1B—C3B1.321 (2)
N1A—C3A1.321 (2)N1B—H11B0.86
N1A—H11A0.86N1B—H12B0.86
N1A—H12A0.86C4A—H4A0.93
O4—Cl1—O1110.11 (9)N1C—C3C—C2C125.21 (14)
O4—Cl1—O3110.07 (8)N2C—C3C—C2C115.84 (14)
O1—Cl1—O3109.55 (8)N1A—C3A—N2A118.17 (14)
O4—Cl1—O2109.26 (8)N1A—C3A—C2A125.89 (14)
O1—Cl1—O2108.67 (8)N2A—C3A—C2A115.95 (13)
O3—Cl1—O2109.15 (8)C4A—N2A—C3A122.52 (13)
N3A—C2A—C3A121.68 (14)C4A—N2A—H2A118.7
N3A—C2A—C1A118.80 (13)C3A—N2A—H2A118.7
C3A—C2A—C1A119.47 (13)C3C—N1C—H11C120
C1A—O1A—H1A109.5C3C—N1C—H12C120
H1W—O1W—H2W110 (2)H11C—N1C—H12C120
C4C—N2C—C3C122.50 (14)N3A—C5A—C4A121.69 (14)
C4C—N2C—H2C118.8N3A—C5A—H5A119.2
C3C—N2C—H2C118.8C4A—C5A—H5A119.2
C2C—N3C—C5C119.78 (14)C2B—N3B—C5B119.75 (14)
N3B—C5B—C4B120.86 (15)O2B—C1B—O1B126.42 (15)
N3B—C5B—H5B119.6O2B—C1B—C2B118.62 (14)
C4B—C5B—H5B119.6O1B—C1B—C2B114.96 (13)
N3C—C5C—C4C121.16 (15)N3B—C2B—C3B121.61 (14)
N3C—C5C—H5C119.4N3B—C2B—C1B117.00 (14)
C4C—C5C—H5C119.4C3B—C2B—C1B121.38 (14)
C3A—N1A—H11A120C2A—N3A—C5A119.10 (13)
C3A—N1A—H12A120O2A—C1A—O1A124.13 (14)
H11A—N1A—H12A120O2A—C1A—C2A121.45 (14)
C4B—N2B—C3B122.34 (14)O1A—C1A—C2A114.38 (13)
C4B—N2B—H2B118.8N2C—C4C—C5C119.23 (14)
C3B—N2B—H2B118.8N2C—C4C—H4C120.4
O2C—C1C—O1C125.77 (14)C5C—C4C—H4C120.4
O2C—C1C—C2C116.62 (13)C3B—N1B—H11B120
O1C—C1C—C2C117.59 (13)C3B—N1B—H12B120
N2B—C4B—C5B119.43 (14)H11B—N1B—H12B120
N2B—C4B—H4B120.3N1B—C3B—N2B119.36 (14)
C5B—C4B—H4B120.3N1B—C3B—C2B124.66 (15)
N3C—C2C—C3C121.48 (14)N2B—C3B—C2B115.96 (14)
N3C—C2C—C1C116.98 (13)N2A—C4A—C5A119.01 (14)
C3C—C2C—C1C121.52 (13)N2A—C4A—H4A120.5
N1C—C3C—N2C118.95 (14)C5A—C4A—H4A120.5
C2C—N3C—C5C—C4C0.2 (2)C5B—N3B—C2B—C1B177.24 (13)
C3B—N2B—C4B—C5B0.1 (2)O2B—C1B—C2B—N3B150.06 (15)
N3B—C5B—C4B—N2B1.2 (2)O1B—C1B—C2B—N3B29.6 (2)
C5C—N3C—C2C—C3C0.9 (2)O2B—C1B—C2B—C3B31.1 (2)
C5C—N3C—C2C—C1C177.26 (14)O1B—C1B—C2B—C3B149.24 (15)
O2C—C1C—C2C—N3C171.42 (14)C3A—C2A—N3A—C5A0.3 (2)
O1C—C1C—C2C—N3C6.8 (2)C1A—C2A—N3A—C5A177.01 (13)
O2C—C1C—C2C—C3C6.8 (2)C4A—C5A—N3A—C2A1.3 (2)
O1C—C1C—C2C—C3C175.03 (14)N3A—C2A—C1A—O2A173.93 (14)
C4C—N2C—C3C—N1C179.80 (14)C3A—C2A—C1A—O2A3.5 (2)
C4C—N2C—C3C—C2C0.2 (2)N3A—C2A—C1A—O1A3.9 (2)
N3C—C2C—C3C—N1C178.63 (15)C3A—C2A—C1A—O1A178.67 (13)
C1C—C2C—C3C—N1C3.3 (2)C3C—N2C—C4C—C5C1.3 (2)
N3C—C2C—C3C—N2C0.9 (2)N3C—C5C—C4C—N2C1.3 (2)
C1C—C2C—C3C—N2C177.19 (13)C4B—N2B—C3B—N1B179.88 (15)
N3A—C2A—C3A—N1A177.91 (14)C4B—N2B—C3B—C2B1.7 (2)
C1A—C2A—C3A—N1A4.8 (2)N3B—C2B—C3B—N1B179.13 (16)
N3A—C2A—C3A—N2A2.0 (2)C1B—C2B—C3B—N1B2.1 (2)
C1A—C2A—C3A—N2A175.33 (12)N3B—C2B—C3B—N2B2.5 (2)
N1A—C3A—N2A—C4A177.75 (14)C1B—C2B—C3B—N2B176.22 (13)
C2A—C3A—N2A—C4A2.1 (2)C3A—N2A—C4A—C5A0.7 (2)
C4B—C5B—N3B—C2B0.3 (2)N3A—C5A—C4A—N2A1.1 (2)
C5B—N3B—C2B—C3B1.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1W0.821.712.5258 (18)172
O1W—H1W···O1Bi0.88 (2)1.92 (2)2.7873 (19)169 (2)
O1W—H2W···O20.84 (2)1.99 (2)2.8176 (19)172 (2)
O1W—H1W···N3Bi0.88 (2)2.56 (2)3.052 (2)115.8 (17)
N2B—H2B···O1C0.861.922.6935 (18)149
N1C—H11C···O2Bii0.862.112.958 (2)170
N2C—H2C···O1Bii0.861.762.6156 (19)171
N2A—H2A···O2Ciii0.861.802.6536 (17)175
N1A—H11A···O1Ciii0.862.142.9340 (19)153
N1B—H11B···O1A0.862.262.916 (2)133
N1B—H11B···O1C0.862.443.087 (2)133
N1B—H12B···O2B0.862.212.814 (2)127
N1A—H12A···O2A0.862.092.7038 (19)128
N1C—H12C···O2C0.862.062.6734 (19)128
N2B—H2B···N3C0.862.413.058 (2)132
N1B—H12B···N3A0.862.413.035 (2)130
N1A—H12A···N3Biv0.862.443.152 (2)140
C4B—H4B···O1v0.932.413.267 (2)153
C4C—H4C···O3vi0.932.453.350 (2)162
C5A—H5A···O2B0.932.583.336 (2)138
C5B—H5B···O2v0.932.483.145 (2)129
C5B—H5B···O2Av0.932.483.164 (2)130
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x, y, z1; (v) x, y, z+1; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H6N3O2+·ClO4·2C5H5N3O2·H2O
Mr535.83
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.1332 (14), 11.816 (2), 11.850 (2)
α, β, γ (°)95.696 (9), 108.148 (8), 102.416 (8)
V3)1039.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.46 × 0.27 × 0.17
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.855, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
15575, 4705, 4165
Rint0.057
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.1, 1.04
No. of reflections4705
No. of parameters332
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.48

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1W0.821.712.5258 (18)172
O1W—H1W···O1Bi0.88 (2)1.92 (2)2.7873 (19)169 (2)
O1W—H2W···O20.84 (2)1.99 (2)2.8176 (19)172 (2)
O1W—H1W···N3Bi0.88 (2)2.56 (2)3.052 (2)115.8 (17)
N2B—H2B···O1C0.861.922.6935 (18)149
N1C—H11C···O2Bii0.862.112.958 (2)170
N2C—H2C···O1Bii0.861.762.6156 (19)171
N2A—H2A···O2Ciii0.861.802.6536 (17)175
N1A—H11A···O1Ciii0.862.142.9340 (19)153
N1B—H11B···O1A0.862.262.916 (2)133
N1B—H11B···O1C0.862.443.087 (2)133
N1B—H12B···O2B0.862.212.814 (2)127
N1A—H12A···O2A0.862.092.7038 (19)128
N1C—H12C···O2C0.862.062.6734 (19)128
N2B—H2B···N3C0.862.413.058 (2)132
N1B—H12B···N3A0.862.413.035 (2)130
N1A—H12A···N3Biv0.862.443.152 (2)140
C4B—H4B···O1v0.932.413.267 (2)153
C4C—H4C···O3vi0.932.453.350 (2)162
C5A—H5A···O2B0.932.583.336 (2)138
C5B—H5B···O2v0.932.483.145 (2)129
C5B—H5B···O2Av0.932.483.164 (2)130
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x, y, z1; (v) x, y, z+1; (vi) x+2, y+1, z+1.
 

Acknowledgements

We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationBendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574–o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Bouacida, S., Anana, H. & Roisnel, T. (2012). Acta Cryst. E68, o1601–o1602.  CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o1409–o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525–o526.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677–o678.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1714-o1715
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds