metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second triclinic polymorph of bis­­(μ-N-nitroso-N-phenyl­hy­droxy­laminato)-κ3O,O′:O′;κ3O′:O,O′-bis­­[(N-nitroso-N-phenyl­hy­droxy­laminato-κ2O,O′)lead(II)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 May 2012; accepted 15 May 2012; online 26 May 2012)

The cupferronate ions in the centrosymmetric dinuclear title compound, [Pb2(C6H5N2O2)4], O,O′-chelate to the two PbII atoms; two of the four nitroso O atoms are also involved in bridging. The geometries of the five-coordinate PbII atoms in the two independent mol­ecules are Ψ-octa­hedral; if more remote Pb⋯O inter­actions are also considered, the coordination number is increased to six for one mol­ecule and to seven for the other. Their coordination polyhedra are ill defined in the chain motif, which runs along [100].

Related literature

For the first triclinic polymorph, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m377.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C6H5N2O2)4]

  • Mr = 962.86

  • Triclinic, [P \overline 1]

  • a = 8.7579 (2) Å

  • b = 10.6985 (3) Å

  • c = 15.3603 (6) Å

  • α = 72.079 (3)°

  • β = 77.582 (3)°

  • γ = 86.538 (2)°

  • V = 1337.31 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.64 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.144, Tmax = 0.253

  • 20132 measured reflections

  • 6173 independent reflections

  • 5479 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.04

  • 6173 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.67 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O1 2.464 (3)
Pb1—O1i 2.599 (3)
Pb1—O2 2.475 (3)
Pb1—O3 2.341 (3)
Pb1—O4 2.410 (3)
Pb2—O5 2.385 (3)
Pb2—O6 2.446 (3)
Pb2—O7 2.393 (3)
Pb2—O7ii 2.943 (3)
Pb2—O8 2.340 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In dinuclear [Pb(C6H5N2O2)2]2, the two cupferronate ions chelate to the each of the two PbII atoms; two of the four nitroso O atoms are also involved in bridging. The geometry of both independent five-coordinate PbIIatoms is distorted Ψ-octahedron; if another two longer intermolecular Pb··· interactions [at 2.955 (1) and 3.099 (1) Å] are considered, the geometry is a distorted Ψ-square antiprism (Najafi et al., 2011). In the second polymorph, which also crystallizes in the triclinic unit cell setting (Scheme I), the two independent dinuclear [Pb2(C6H5N2O2)4] molecules lie on centers-of-inversion. The anion O,O'-chelates to the PbII atoms; one of the two nitroso O atoms is also involved in bridging. The bridge in one dimeric molecule is of a normal length [Pb–O 2.599 (3) Å] compared with that in the other [Pb–O 2.943 (3) Å] (Table 1).

The geometry of the five-coordinate PbII atom in the two independent molecules is Ψ-octahedral. For the dimer with the Pb1 atom, if two other Pb···O interactions are considered [Pb1–O5 2.761 (3), Pb1–O7 3.168 (3) Å], the coordination number is increased to seven.

For the dimer with the Pb2 atom, an additional interaction [Pb2···O2 2.843 (3) Å] raises the coordination number to six. This interaction is, however, shorter than the bridging interaction [Pb2–O7ii 2.943 (3) Å].

Related literature top

For the first triclinic polymorph, see: Najafi et al. (2011).

Experimental top

Lead(II) nitrate (0.33 g, 1 mmol) dissolved in ethanol (20 ml) was added to a solution of the cupferron ligand (0.31 g, 2 mmol) and pyrazine (0.08 g, 1 mmol) dissolved in ethanol (20 ml). The mixture was stirred and then set aside for the growth of brown colored crystals. The N-heterocycle was not incorporated in the final product.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The final difference Fourier map had a peak at 1.30 Å from Pb2 and a hole at 0.70 Å from Pb1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of one independent [Pb(C6H5N2O2)2]2 molecule at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.
[Figure 2] Fig. 2. Thermal ellipsoid plot (Barbour, 2001) of second independent [Pb(C6H5N2O2)2]2 molecule at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.
[Figure 3] Fig. 3. Geometry of PbII in the two independent molecules.
bis(µ-N-nitroso-N-phenylhydroxylaminato)- κ3O,O':O';κ3O':O,O'- bis[(N-nitroso-N-phenylhydroxylaminato- κ2O,O')lead(II)] top
Crystal data top
[Pb2(C6H5N2O2)4]Z = 2
Mr = 962.86F(000) = 896
Triclinic, P1Dx = 2.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7579 (2) ÅCell parameters from 11683 reflections
b = 10.6985 (3) Åθ = 2.4–27.5°
c = 15.3603 (6) ŵ = 12.64 mm1
α = 72.079 (3)°T = 100 K
β = 77.582 (3)°Prism, light brown
γ = 86.538 (2)°0.25 × 0.20 × 0.15 mm
V = 1337.31 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6173 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5479 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1313
Tmin = 0.144, Tmax = 0.253l = 1919
20132 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0248P)2]
where P = (Fo2 + 2Fc2)/3
6173 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 1.67 e Å3
Crystal data top
[Pb2(C6H5N2O2)4]γ = 86.538 (2)°
Mr = 962.86V = 1337.31 (7) Å3
Triclinic, P1Z = 2
a = 8.7579 (2) ÅMo Kα radiation
b = 10.6985 (3) ŵ = 12.64 mm1
c = 15.3603 (6) ÅT = 100 K
α = 72.079 (3)°0.25 × 0.20 × 0.15 mm
β = 77.582 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6173 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5479 reflections with I > 2σ(I)
Tmin = 0.144, Tmax = 0.253Rint = 0.040
20132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.04Δρmax = 0.78 e Å3
6173 reflectionsΔρmin = 1.67 e Å3
379 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.888148 (16)0.622909 (14)0.393469 (10)0.00983 (5)
Pb20.471808 (16)0.531765 (14)0.351907 (10)0.01053 (5)
O10.9179 (3)0.3990 (3)0.4962 (2)0.0156 (6)
O20.7803 (3)0.4374 (3)0.3609 (2)0.0125 (6)
O31.1137 (3)0.5409 (3)0.3170 (2)0.0129 (6)
O41.0296 (3)0.7788 (3)0.2542 (2)0.0141 (6)
O50.6877 (3)0.6768 (3)0.2704 (2)0.0133 (6)
O60.5766 (3)0.5392 (3)0.1894 (2)0.0131 (6)
O70.5208 (3)0.6402 (3)0.4582 (2)0.0139 (6)
O80.3623 (3)0.7412 (3)0.3313 (2)0.0143 (6)
N10.9072 (4)0.2972 (3)0.4689 (2)0.0140 (7)
N20.8377 (4)0.3219 (3)0.3994 (2)0.0101 (7)
N31.1933 (4)0.6107 (3)0.2353 (2)0.0115 (7)
N41.1462 (4)0.7288 (3)0.2075 (2)0.0098 (7)
N50.7635 (4)0.6830 (3)0.1859 (2)0.0127 (7)
N60.7028 (4)0.6103 (3)0.1488 (2)0.0110 (7)
N70.4850 (4)0.7643 (3)0.4436 (2)0.0131 (7)
N80.4051 (4)0.8099 (3)0.3794 (2)0.0086 (7)
C10.8242 (4)0.2155 (4)0.3612 (3)0.0112 (8)
C20.9125 (5)0.1027 (4)0.3863 (3)0.0148 (9)
H20.98130.09410.42790.018*
C30.8967 (5)0.0026 (4)0.3484 (3)0.0176 (10)
H30.95580.07550.36450.021*
C40.7972 (5)0.0148 (4)0.2881 (3)0.0171 (9)
H40.78740.05450.26310.021*
C50.7117 (5)0.1286 (4)0.2640 (3)0.0171 (9)
H50.64220.13680.22280.020*
C60.7265 (5)0.2315 (4)0.2996 (3)0.0146 (9)
H60.67030.31080.28160.018*
C71.2235 (5)0.8123 (4)0.1153 (3)0.0131 (9)
C81.3608 (5)0.7689 (4)0.0693 (3)0.0166 (9)
H81.40800.68880.09790.020*
C91.4266 (5)0.8479 (4)0.0206 (3)0.0195 (10)
H91.52000.82100.05440.023*
C101.3564 (5)0.9660 (4)0.0612 (3)0.0183 (9)
H101.40081.01840.12280.022*
C111.2230 (5)1.0060 (4)0.0118 (3)0.0192 (10)
H111.17671.08720.03920.023*
C121.1545 (5)0.9295 (4)0.0777 (3)0.0165 (9)
H121.06250.95750.11200.020*
C130.7777 (4)0.6118 (4)0.0551 (3)0.0098 (8)
C140.9238 (5)0.6690 (4)0.0137 (3)0.0149 (9)
H140.97640.70900.04640.018*
C150.9922 (5)0.6669 (4)0.0762 (3)0.0165 (9)
H151.09190.70650.10550.020*
C160.9158 (5)0.6075 (4)0.1235 (3)0.0173 (9)
H160.96370.60530.18470.021*
C170.7699 (5)0.5515 (4)0.0815 (3)0.0159 (9)
H170.71690.51210.11440.019*
C180.7002 (4)0.5525 (4)0.0084 (3)0.0153 (9)
H180.60050.51290.03760.018*
C190.3613 (4)0.9468 (4)0.3584 (3)0.0112 (8)
C200.3630 (4)1.0144 (4)0.4218 (3)0.0143 (9)
H200.38820.97160.48090.017*
C210.3265 (5)1.1477 (4)0.3959 (3)0.0192 (10)
H210.32831.19670.43780.023*
C220.2877 (5)1.2099 (4)0.3100 (3)0.0191 (10)
H220.26371.30090.29300.023*
C230.2842 (5)1.1385 (4)0.2494 (3)0.0176 (9)
H230.25631.18050.19090.021*
C240.3211 (4)1.0058 (4)0.2730 (3)0.0135 (9)
H240.31870.95670.23120.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01166 (8)0.00969 (8)0.00971 (9)0.00014 (6)0.00231 (6)0.00513 (6)
Pb20.01357 (8)0.00947 (8)0.00833 (9)0.00020 (6)0.00354 (6)0.00146 (6)
O10.0233 (16)0.0126 (15)0.0133 (16)0.0039 (12)0.0048 (13)0.0059 (13)
O20.0136 (14)0.0086 (14)0.0169 (16)0.0002 (11)0.0055 (12)0.0046 (12)
O30.0163 (14)0.0095 (14)0.0110 (15)0.0033 (11)0.0009 (12)0.0023 (12)
O40.0136 (14)0.0115 (15)0.0166 (16)0.0057 (11)0.0004 (12)0.0068 (13)
O50.0178 (15)0.0141 (15)0.0081 (15)0.0011 (12)0.0022 (12)0.0036 (12)
O60.0125 (14)0.0143 (15)0.0122 (15)0.0021 (12)0.0020 (12)0.0035 (13)
O70.0194 (15)0.0101 (15)0.0114 (15)0.0023 (12)0.0045 (12)0.0018 (12)
O80.0198 (15)0.0112 (15)0.0168 (16)0.0026 (12)0.0108 (13)0.0068 (13)
N10.0156 (17)0.0156 (19)0.0114 (18)0.0043 (14)0.0009 (15)0.0052 (15)
N20.0120 (16)0.0084 (17)0.0102 (17)0.0012 (13)0.0048 (14)0.0016 (14)
N30.0143 (17)0.0085 (17)0.0107 (18)0.0027 (13)0.0031 (14)0.0015 (14)
N40.0078 (15)0.0116 (17)0.0108 (18)0.0015 (13)0.0038 (13)0.0036 (14)
N50.0167 (17)0.0119 (18)0.0103 (18)0.0026 (14)0.0027 (14)0.0040 (15)
N60.0113 (16)0.0089 (17)0.0134 (18)0.0012 (13)0.0034 (14)0.0038 (15)
N70.0133 (17)0.0120 (18)0.0113 (18)0.0002 (14)0.0011 (14)0.0006 (15)
N80.0115 (16)0.0092 (17)0.0062 (17)0.0006 (13)0.0027 (13)0.0035 (14)
C10.0119 (19)0.0065 (19)0.014 (2)0.0032 (15)0.0020 (16)0.0034 (17)
C20.012 (2)0.012 (2)0.019 (2)0.0002 (16)0.0025 (17)0.0047 (18)
C30.013 (2)0.008 (2)0.029 (3)0.0021 (16)0.0006 (19)0.0045 (19)
C40.017 (2)0.013 (2)0.023 (2)0.0019 (17)0.0011 (19)0.0111 (19)
C50.014 (2)0.019 (2)0.019 (2)0.0003 (17)0.0031 (18)0.0071 (19)
C60.014 (2)0.013 (2)0.017 (2)0.0007 (16)0.0037 (17)0.0043 (18)
C70.017 (2)0.013 (2)0.009 (2)0.0015 (16)0.0057 (17)0.0012 (17)
C80.018 (2)0.017 (2)0.015 (2)0.0029 (18)0.0051 (18)0.0048 (19)
C90.019 (2)0.020 (2)0.019 (2)0.0003 (18)0.0003 (19)0.008 (2)
C100.027 (2)0.015 (2)0.013 (2)0.0042 (18)0.0040 (19)0.0032 (19)
C110.026 (2)0.011 (2)0.020 (2)0.0025 (18)0.012 (2)0.0003 (19)
C120.018 (2)0.016 (2)0.016 (2)0.0017 (17)0.0047 (18)0.0039 (19)
C130.0126 (19)0.0095 (19)0.0068 (19)0.0035 (15)0.0044 (16)0.0009 (16)
C140.018 (2)0.014 (2)0.015 (2)0.0030 (17)0.0068 (18)0.0051 (18)
C150.015 (2)0.012 (2)0.017 (2)0.0001 (17)0.0002 (18)0.0003 (18)
C160.021 (2)0.016 (2)0.013 (2)0.0087 (18)0.0036 (18)0.0044 (18)
C170.022 (2)0.017 (2)0.012 (2)0.0042 (18)0.0071 (18)0.0058 (18)
C180.014 (2)0.014 (2)0.018 (2)0.0022 (17)0.0028 (18)0.0054 (19)
C190.0106 (19)0.008 (2)0.013 (2)0.0004 (15)0.0021 (16)0.0019 (17)
C200.0118 (19)0.017 (2)0.012 (2)0.0029 (17)0.0001 (17)0.0024 (18)
C210.015 (2)0.018 (2)0.026 (3)0.0024 (18)0.0021 (19)0.009 (2)
C220.015 (2)0.014 (2)0.026 (3)0.0024 (17)0.0041 (19)0.003 (2)
C230.018 (2)0.016 (2)0.016 (2)0.0034 (18)0.0040 (18)0.0015 (19)
C240.0130 (19)0.014 (2)0.014 (2)0.0016 (16)0.0029 (17)0.0064 (18)
Geometric parameters (Å, º) top
Pb1—O12.464 (3)C5—H50.9500
Pb1—O1i2.599 (3)C6—H60.9500
Pb1—O22.475 (3)C7—C121.372 (6)
Pb1—O32.341 (3)C7—C81.389 (6)
Pb1—O42.410 (3)C8—C91.397 (6)
Pb2—O52.385 (3)C8—H80.9500
Pb2—O62.446 (3)C9—C101.396 (6)
Pb2—O72.393 (3)C9—H90.9500
Pb2—O7ii2.943 (3)C10—C111.371 (6)
Pb2—O82.340 (3)C10—H100.9500
O1—N11.297 (4)C11—C121.390 (6)
O1—Pb1i2.599 (3)C11—H110.9500
O2—N21.316 (4)C12—H120.9500
O3—N31.315 (4)C13—C181.385 (5)
O4—N41.303 (4)C13—C141.386 (6)
O5—N51.308 (4)C14—C151.388 (6)
O6—N61.304 (4)C14—H140.9500
O7—N71.306 (4)C15—C161.388 (6)
O8—N81.308 (4)C15—H150.9500
N1—N21.291 (5)C16—C171.381 (6)
N2—C11.452 (5)C16—H160.9500
N3—N41.277 (4)C17—C181.388 (6)
N4—C71.464 (5)C17—H170.9500
N5—N61.290 (5)C18—H180.9500
N6—C131.444 (5)C19—C241.381 (6)
N7—N81.289 (5)C19—C201.383 (6)
N8—C191.446 (5)C20—C211.394 (6)
C1—C61.375 (6)C20—H200.9500
C1—C21.390 (5)C21—C221.387 (6)
C2—C31.393 (6)C21—H210.9500
C2—H20.9500C22—C231.379 (6)
C3—C41.376 (6)C22—H220.9500
C3—H30.9500C23—C241.389 (6)
C4—C51.383 (6)C23—H230.9500
C4—H40.9500C24—H240.9500
C5—C61.395 (6)
O3—Pb1—O465.01 (9)C4—C5—H5119.7
O3—Pb1—O174.85 (9)C6—C5—H5119.7
O4—Pb1—O1139.49 (9)C1—C6—C5118.6 (4)
O3—Pb1—O278.49 (9)C1—C6—H6120.7
O4—Pb1—O2112.69 (10)C5—C6—H6120.7
O1—Pb1—O261.82 (9)C12—C7—C8123.1 (4)
O3—Pb1—O1i76.97 (10)C12—C7—N4118.0 (4)
O4—Pb1—O1i99.80 (9)C8—C7—N4119.0 (4)
O1—Pb1—O1i64.69 (11)C7—C8—C9117.3 (4)
O2—Pb1—O1i125.15 (9)C7—C8—H8121.3
O8—Pb2—O576.10 (10)C9—C8—H8121.3
O8—Pb2—O765.62 (9)C10—C9—C8120.6 (4)
O5—Pb2—O773.49 (9)C10—C9—H9119.7
O8—Pb2—O6100.77 (10)C8—C9—H9119.7
O5—Pb2—O663.59 (9)C11—C10—C9119.7 (4)
O7—Pb2—O6137.04 (9)C11—C10—H10120.1
O8—Pb2—O7ii119.66 (9)C9—C10—H10120.1
O5—Pb2—O7ii118.21 (9)C10—C11—C12121.0 (4)
O7—Pb2—O7ii64.60 (10)C10—C11—H11119.5
O6—Pb2—O7ii139.15 (8)C12—C11—H11119.5
N1—O1—Pb1120.9 (2)C7—C12—C11118.2 (4)
N1—O1—Pb1i115.5 (2)C7—C12—H12120.9
Pb1—O1—Pb1i115.31 (11)C11—C12—H12120.9
N2—O2—Pb1114.4 (2)C18—C13—C14121.1 (4)
N3—O3—Pb1121.5 (2)C18—C13—N6118.0 (3)
N4—O4—Pb1114.3 (2)C14—C13—N6121.0 (4)
N5—O5—Pb2123.0 (2)C13—C14—C15119.0 (4)
N6—O6—Pb2115.2 (2)C13—C14—H14120.5
N7—O7—Pb2118.8 (2)C15—C14—H14120.5
N8—O8—Pb2115.6 (2)C14—C15—C16120.4 (4)
N2—N1—O1113.1 (3)C14—C15—H15119.8
N1—N2—O2124.0 (3)C16—C15—H15119.8
N1—N2—C1117.5 (3)C17—C16—C15119.9 (4)
O2—N2—C1118.5 (3)C17—C16—H16120.1
N4—N3—O3114.2 (3)C15—C16—H16120.1
N3—N4—O4124.3 (3)C16—C17—C18120.3 (4)
N3—N4—C7118.0 (3)C16—C17—H17119.8
O4—N4—C7117.6 (3)C18—C17—H17119.8
N6—N5—O5113.3 (3)C13—C18—C17119.3 (4)
N5—N6—O6124.3 (3)C13—C18—H18120.4
N5—N6—C13117.3 (3)C17—C18—H18120.4
O6—N6—C13118.4 (3)C24—C19—C20122.3 (4)
N8—N7—O7114.1 (3)C24—C19—N8117.3 (4)
N7—N8—O8124.5 (3)C20—C19—N8120.4 (4)
N7—N8—C19117.7 (3)C19—C20—C21117.8 (4)
O8—N8—C19117.8 (3)C19—C20—H20121.1
C6—C1—C2122.2 (4)C21—C20—H20121.1
C6—C1—N2118.5 (4)C22—C21—C20121.1 (4)
C2—C1—N2119.3 (4)C22—C21—H21119.4
C1—C2—C3117.8 (4)C20—C21—H21119.4
C1—C2—H2121.1C23—C22—C21119.4 (4)
C3—C2—H2121.1C23—C22—H22120.3
C4—C3—C2121.2 (4)C21—C22—H22120.3
C4—C3—H3119.4C22—C23—C24120.8 (4)
C2—C3—H3119.4C22—C23—H23119.6
C3—C4—C5119.7 (4)C24—C23—H23119.6
C3—C4—H4120.2C19—C24—C23118.6 (4)
C5—C4—H4120.2C19—C24—H24120.7
C4—C5—C6120.6 (4)C23—C24—H24120.7
O3—Pb1—O1—N164.4 (3)O7—N7—N8—O80.3 (5)
O4—Pb1—O1—N172.2 (3)O7—N7—N8—C19179.6 (3)
O2—Pb1—O1—N120.4 (2)Pb2—O8—N8—N79.0 (4)
O1i—Pb1—O1—N1146.9 (3)Pb2—O8—N8—C19170.4 (2)
O3—Pb1—O1—Pb1i82.51 (12)N1—N2—C1—C6168.1 (4)
O4—Pb1—O1—Pb1i74.70 (18)O2—N2—C1—C612.6 (5)
O2—Pb1—O1—Pb1i167.38 (15)N1—N2—C1—C213.4 (5)
O1i—Pb1—O1—Pb1i0.0O2—N2—C1—C2165.9 (3)
O3—Pb1—O2—N260.2 (2)C6—C1—C2—C31.5 (6)
O4—Pb1—O2—N2116.7 (2)N2—C1—C2—C3180.0 (4)
O1—Pb1—O2—N218.6 (2)C1—C2—C3—C40.1 (6)
O1i—Pb1—O2—N24.6 (3)C2—C3—C4—C50.4 (6)
O4—Pb1—O3—N37.0 (2)C3—C4—C5—C60.6 (6)
O1—Pb1—O3—N3178.6 (3)C2—C1—C6—C52.4 (6)
O2—Pb1—O3—N3115.0 (3)N2—C1—C6—C5179.0 (4)
O1i—Pb1—O3—N3114.5 (3)C4—C5—C6—C12.0 (6)
O3—Pb1—O4—N46.2 (2)N3—N4—C7—C12167.6 (4)
O1—Pb1—O4—N414.5 (3)O4—N4—C7—C129.8 (5)
O2—Pb1—O4—N458.1 (3)N3—N4—C7—C811.3 (6)
O1i—Pb1—O4—N476.7 (2)O4—N4—C7—C8171.4 (4)
O8—Pb2—O5—N5115.5 (3)C12—C7—C8—C92.2 (7)
O7—Pb2—O5—N5176.3 (3)N4—C7—C8—C9176.6 (4)
O6—Pb2—O5—N55.7 (3)C7—C8—C9—C100.5 (7)
O7ii—Pb2—O5—N5128.1 (3)C8—C9—C10—C111.1 (7)
O8—Pb2—O6—N674.2 (2)C9—C10—C11—C121.2 (7)
O5—Pb2—O6—N65.7 (2)C8—C7—C12—C112.1 (7)
O7—Pb2—O6—N68.5 (3)N4—C7—C12—C11176.7 (4)
O7ii—Pb2—O6—N697.7 (3)C10—C11—C12—C70.3 (7)
O8—Pb2—O7—N710.1 (2)N5—N6—C13—C18169.3 (4)
O5—Pb2—O7—N771.8 (2)O6—N6—C13—C188.8 (5)
O6—Pb2—O7—N769.2 (3)N5—N6—C13—C1411.6 (5)
O7ii—Pb2—O7—N7154.8 (3)O6—N6—C13—C14170.3 (3)
O5—Pb2—O8—N868.8 (2)C18—C13—C14—C150.4 (6)
O7—Pb2—O8—N89.1 (2)N6—C13—C14—C15179.4 (4)
O6—Pb2—O8—N8127.9 (2)C13—C14—C15—C160.5 (6)
O7ii—Pb2—O8—N846.0 (3)C14—C15—C16—C170.9 (6)
Pb1—O1—N1—N218.8 (4)C15—C16—C17—C181.0 (6)
Pb1i—O1—N1—N2165.7 (2)C14—C13—C18—C170.5 (6)
O1—N1—N2—O21.3 (5)N6—C13—C18—C17179.5 (3)
O1—N1—N2—C1178.0 (3)C16—C17—C18—C130.8 (6)
Pb1—O2—N2—N119.4 (4)N7—N8—C19—C24160.1 (3)
Pb1—O2—N2—C1159.8 (2)O8—N8—C19—C2419.3 (5)
Pb1—O3—N3—N46.8 (4)N7—N8—C19—C2018.8 (5)
O3—N3—N4—O40.2 (5)O8—N8—C19—C20161.8 (3)
O3—N3—N4—C7177.4 (3)C24—C19—C20—C211.7 (6)
Pb1—O4—N4—N35.9 (4)N8—C19—C20—C21177.1 (3)
Pb1—O4—N4—C7171.3 (2)C19—C20—C21—C220.9 (6)
Pb2—O5—N5—N64.8 (4)C20—C21—C22—C230.4 (6)
O5—N5—N6—O61.5 (5)C21—C22—C23—C240.8 (6)
O5—N5—N6—C13179.4 (3)C20—C19—C24—C231.3 (6)
Pb2—O6—N6—N56.4 (5)N8—C19—C24—C23177.6 (3)
Pb2—O6—N6—C13175.6 (2)C22—C23—C24—C190.0 (6)
Pb2—O7—N7—N89.5 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(C6H5N2O2)4]
Mr962.86
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7579 (2), 10.6985 (3), 15.3603 (6)
α, β, γ (°)72.079 (3), 77.582 (3), 86.538 (2)
V3)1337.31 (7)
Z2
Radiation typeMo Kα
µ (mm1)12.64
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.144, 0.253
No. of measured, independent and
observed [I > 2σ(I)] reflections
20132, 6173, 5479
Rint0.040
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.04
No. of reflections6173
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 1.67

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb1—O12.464 (3)Pb2—O52.385 (3)
Pb1—O1i2.599 (3)Pb2—O62.446 (3)
Pb1—O22.475 (3)Pb2—O72.393 (3)
Pb1—O32.341 (3)Pb2—O7ii2.943 (3)
Pb1—O42.410 (3)Pb2—O82.340 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m377.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds