

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1-[(6-Chloropyridin-3-yl)methyl]-imidazolidin-2-one

Rajni Kant, ^{a*} Vivek K. Gupta, ^a Kamini Kapoor, ^a Chetan S. Shripanavar ^b and Kaushik Banerjee ^c

^aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, ^bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India, and ^cNational Research Centre for Grapes, Pune 412 307, India

Correspondence e-mail: rkvk.paper11@gmail.com Received 14 May 2012; accepted 23 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.068; wR factor = 0.205; data-to-parameter ratio = 14.3.

In the title molecule, $C_9H_{10}ClN_3O$, the dihedral angle between the pyridine ring and imidazoline ring mean plane [maximum deviation = 0.031–(3) Å] is 76.2 (1)°. In the crystal, $N-H\cdots O$ hydrogen bonds link pairs of molecules to form inversion dimers. In addition, weak $C-H\cdots N$ hydrogen bonds and $\pi-\pi$ stacking interactions between pyridine rings [centroid-centroid distance = 3.977 (2) Å] are observed.

Related literature

For the background to the insecticidal applications of imidacloprid (*N*-{1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydro-imidazol-2-yl}nitramide), see: Samaritoni *et al.* (2003); Suchail *et al.* (2001, 2004); Schulz-Jander & Casida (2002); Kagabu *et al.* (2007); Pandey *et al.* (2009). For related structures, see: Kapoor *et al.* (2011, 2012); Kant *et al.* (2012).

Experimental

Crystal data

 $C_9H_{10}ClN_3O$ $\gamma = 80.020 (5)^\circ$ $W_r = 211.65$ $V = 476.26 (5) Å^3$ Z = 2 $\alpha = 5.9864 (3) Å$ $M_0 Kα$ radiation $M_0 = 7.4724 (5) Å$ $M_0 = 1.0235 (8) Å$ $M_0 = 83.103 (6)^\circ$ $M_0 = 80.040 (5)^\circ$

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\min} = 0.835, T_{\max} = 1.000$ 6991 measured reflections 1876 independent reflections 1127 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.053$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.205$ S = 0.981876 reflections 131 parameters H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.60 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.26 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H···A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdot\cdot\cdot A$
$ \begin{array}{c} N11 - H11 \cdots O12^{i} \\ C4 - H4 \cdots N1^{ii} \end{array} $	0.85 (5)	2.08 (5)	2.924 (4)	174 (5)
	0.93	2.55	3.369 (5)	147

Symmetry codes: (i) -x - 1, -y, -z + 1; (ii) x - 1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003 and the University of Jammu, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5478).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Kagabu, S., Ishihara, R., Hieda, Y., Nishimura, K. & Naruse, Y. (2007). J. Agric. Food Chem. 55, 812–818.

Kani, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, 0147.

Kapoor, K., Gupta, V. K., Deshmukh, M. B., Shripanavar, C. S. & Kant, R. (2012). Acta Cryst. E68, 0469.

Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Shripanavar, C. S. (2011). X-ray Struct. Anal. Online, 27, 55–56.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Pandey, G., Dorrian, S. J., Russel, R. J. & Oakeshott, J. G. (2009). *Biochem. Biophys. Res. Commun.* 380, 710–714.

Samaritoni, J. G., Demeter, D. A., Gifford, J. M., Watson, G. B., Kempe, M. S. & Bruce, T. J. (2003). J. Agric. Food Chem. 51, 3035–3042.

Schulz-Jander, D. A. & Casida, J. E. (2002). *Toxicol. Lett.* **132**, 65–70.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Suchail, S., De Sousa, G., Rahmani, R. & Belzunces, L. P. (2004). Pest Manage. Sci. 60, 1956–1062.

Suchail, S., Guez, D. & Belzunces, L. P. (2001). Environ. Toxicol. Chem. 20, 2482–2486.

supporting information

Acta Cryst. (2012). E68, o1939 [doi:10.1107/S1600536812023537]

1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-one

Rajni Kant, Vivek K. Gupta, Kamini Kapoor, Chetan S. Shripanavar and Kaushik Banerjee

S1. Comment

Imidacloprid is an insecticide which acts as an agonist of the acetylcholine receptor of insect nervous system. Oral, acute and chronic toxicity of imidacloprid and its main metabolite 1-[(6-chloropyridin-3-yl)methyl] imidazolidin-2-one (urea derivative) in mid-gut and rectum were investigated in Apis mellifera (Suchail *et al.*, 2001; Suchail *et al.*, 2004). Acute intoxication by imidacloprid or its metabolites results in rapid appearance of neurotoxicity symptoms, such as hyperresponsiveness and, hyperactivity (Suchail *et al.*, 2001). Many metabolites of imidacloprid have been identified, but the enzymatic basis for their formation has not been reported in many cases (Schulz-Jander & Casida, 2002). Imidacloprid is degraded by liver enzymes to other nitroimines such as the corresponding guanidine and urea derivatives. The fate of imidacloprid in soil environment in terms of the metabolites toxic to vertebrates has been reported by Pandey *et al.* (2009). The supreme biological profile of imidacloprid is giving impulse to the development of new products by modifying the structural features of the prototype (Kagabu *et al.*, 2007). Therefore, in a search for new neonicotinoid insecticides with improved profiles, some neonicotinoid derivatives have been designed and synthesized. The crystal structure of the title compound (I) is shown in Fig. 1.

The bond lengths and angles in (I) show normal values and are comparable with related structures (Kapoor *et al.*, 2011,2012; Kant *et al.*, 2012). The plane through the pyridine ring forms dihedral angle of 76.2 (1)Å with the imidazoline ring plane. In the crystal, N—H···O hydrogen bonds link pairs of molecules to form inversion dimers (Fig. 2). These dimers are linked by weak C—H···N interactions. The crystal structure is further stabilized by π – π interactions between the pyridine ring of the molecule at (x, y, z) and the pyridine ring of an inversion related molecule at (1 - x, -y, -z) [centroid separation = 3.977 (2) Å, interplanar spacing = 3.267 Å and centroid shift = 2.267 Å].

S2. Experimental

Imidacloprid (0.256 g, 0.001 mol) was dissolved in 5 ml methanol and to it 5 ml of 1 N NaOH solution was added. The reaction mixture was refluxed for about 10 hrs on a water bath at 343K and then cooled. The reaction mixture was neutralized with 1 N HCl solution. The neutralized solution was kept standing for slow evaporation until a white transparent crystalline separated out (m.p. 416 K). LC—MS/MS: 212[*M*+H+], 195, 169, 159, 128, 126, 99, 92 m/z.

S3. Refinement

Hydrogen atom H11 was found in a difference map and refined isotropically. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acta Cryst. (2012). E68, o1939 Sup-1

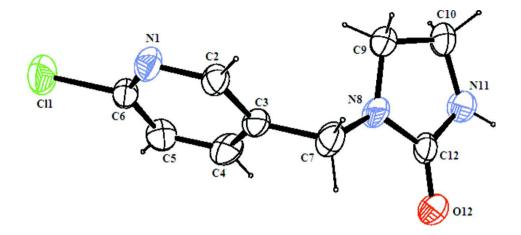


Figure 1

The molecular structure of (I) with thermal ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Acta Cryst. (2012). E68, o1939 sup-2

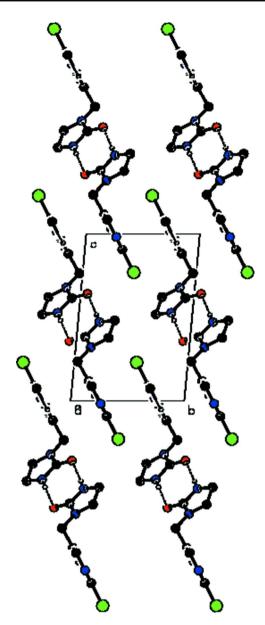


Figure 2 The packing of (I) with broken lines to show N—H···O hydrogen bonds.

1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-one

Crystal data	
$C_9H_{10}ClN_3O$	$\gamma = 80.020 (5)^{\circ}$
$M_r = 211.65$	$V = 476.26 (5) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z=2
Hall symbol: -P 1	F(000) = 220
a = 5.9864 (3) Å	$D_{\rm x} = 1.476 {\rm \ Mg \ m^{-3}}$
b = 7.4724 (5) Å	Melting point: 416 K
c = 11.0235 (8) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
$\alpha = 83.103 (6)^{\circ}$	Cell parameters from 2653 reflections
$\beta = 80.040 (5)^{\circ}$	$\theta = 3.5 - 28.9^{\circ}$

Acta Cryst. (2012). E**68**, o1939

 $\mu = 0.37 \text{ mm}^{-1}$ T = 293 K

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

Detector resolution: 16.1049 pixels mm⁻¹

 ω scans

Absorption correction: multi-scan

(CrysAlis PRO; Oxford Diffraction, 2010)

 $T_{\min} = 0.835, T_{\max} = 1.000$

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$

 $wR(F^2) = 0.205$

S = 0.98

1876 reflections 131 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

Block, white $0.3 \times 0.2 \times 0.1 \text{ mm}$

6991 measured reflections 1876 independent reflections 1127 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.053$

 $\theta_{\text{max}} = 26.0^{\circ}, \, \theta_{\text{min}} = 3.5^{\circ}$

 $h = -7 \longrightarrow 7$

 $k = -9 \rightarrow 9$

 $l = -13 \rightarrow 13$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H atoms treated by a mixture of independent

and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.1095P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 0.60 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.26 \text{ e Å}^{-3}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.4849 (2)	0.45046 (14)	-0.23011 (9)	0.0729 (5)	
N1	0.5214 (5)	0.2659 (4)	-0.0175(3)	0.0489 (8)	
C4	0.0675 (6)	0.2139 (5)	0.0355 (4)	0.0542 (10)	
H4	-0.0858	0.1979	0.0528	0.065*	
C3	0.2141 (5)	0.1420 (4)	0.1179 (3)	0.0410 (8)	
C2	0.4371 (5)	0.1719 (5)	0.0871 (3)	0.0432 (8)	
H2	0.5374	0.1237	0.1427	0.052*	
C5	0.1490(6)	0.3105 (5)	-0.0738(3)	0.0496 (9)	
H5	0.0535	0.3601	-0.1316	0.059*	
C6	0.3766 (6)	0.3299 (4)	-0.0931(3)	0.0436 (8)	

Acta Cryst. (2012). E68, o1939 Sup-4

supporting information

C7	0.1389 (6)	0.0288 (5)	0.2357 (4)	0.0528 (9)	
H7A	0.0729	-0.0717	0.2158	0.063*	
H7B	0.2721	-0.0224	0.2747	0.063*	
N8	-0.0276(5)	0.1334 (4)	0.3217(3)	0.0539 (8)	
C9	0.0273 (6)	0.2816 (5)	0.3778 (3)	0.0489 (9)	
H9A	0.0401	0.3877	0.3185	0.059*	
H9B	0.1703	0.2460	0.4108	0.059*	
C10	-0.1757(6)	0.3212 (5)	0.4818 (4)	0.0556 (10)	
H10A	-0.1250	0.3054	0.5619	0.067*	
H10B	-0.2575	0.4442	0.4688	0.067*	
N11	-0.3167 (6)	0.1876 (5)	0.4724 (3)	0.0645 (10)	
C12	-0.2227(6)	0.0748 (5)	0.3831 (3)	0.0456 (9)	
O12	-0.2977(4)	-0.0596 (4)	0.3591 (2)	0.0627 (8)	
H11	-0.435 (8)	0.156 (6)	0.518 (4)	0.091 (15)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0942 (9)	0.0714 (8)	0.0479 (7)	-0.0244 (6)	0.0061 (6)	0.0070 (5)
N1	0.0365 (16)	0.0625 (18)	0.0457 (19)	-0.0145 (13)	0.0013 (14)	0.0024 (15)
C4	0.0285 (17)	0.068(2)	0.068(3)	-0.0144 (16)	-0.0060 (17)	-0.005(2)
C3	0.0331 (17)	0.0449 (17)	0.044(2)	-0.0102 (14)	0.0038 (15)	-0.0095 (15)
C2	0.0330 (17)	0.056(2)	0.040(2)	-0.0110(14)	-0.0023(15)	-0.0025 (16)
C5	0.043(2)	0.058(2)	0.048(2)	-0.0045 (16)	-0.0123 (17)	-0.0026 (18)
C6	0.048(2)	0.0440 (18)	0.036(2)	-0.0116 (15)	0.0023 (16)	-0.0025 (15)
C7	0.048(2)	0.052(2)	0.053(2)	-0.0131 (16)	0.0096 (18)	-0.0017 (18)
N8	0.0459 (16)	0.0637 (19)	0.051(2)	-0.0266 (14)	0.0192 (14)	-0.0135 (16)
C9	0.051(2)	0.052(2)	0.043(2)	-0.0176 (16)	0.0032 (17)	-0.0041 (17)
C10	0.060(2)	0.063(2)	0.040(2)	-0.0163 (18)	0.0084 (18)	-0.0049 (18)
N11	0.054(2)	0.090(2)	0.052(2)	-0.0363 (19)	0.0183 (17)	-0.0188 (19)
C12	0.0399 (18)	0.064(2)	0.034(2)	-0.0194 (16)	-0.0016 (15)	0.0038 (17)
012	0.0553 (16)	0.0826 (19)	0.0558 (18)	-0.0392(14)	0.0077 (13)	-0.0107(15)

Geometric parameters (Å, o)

C11—C6	1.746 (3)	С7—Н7В	0.9700
N1—C6	1.298 (4)	N8—C12	1.359 (4)
N1—C2	1.344 (4)	N8—C9	1.442 (4)
C4—C3	1.371 (5)	C9—C10	1.534 (5)
C4—C5	1.386 (5)	C9—H9A	0.9700
C4—H4	0.9300	C9—H9B	0.9700
C3—C2	1.370 (4)	C10—N11	1.437 (5)
C3—C7	1.507 (5)	C10—H10A	0.9700
C2—H2	0.9300	C10—H10B	0.9700
C5—C6	1.373 (5)	N11—C12	1.357 (5)
C5—H5	0.9300	N11—H11	0.85 (4)
C7—N8	1.444 (5)	C12—O12	1.241 (4)
C7—H7A	0.9700		

Acta Cryst. (2012). E**68**, o1939

C6—N1—C2	115.8 (3)	C12—N8—C9	111.8 (3)
C3—C4—C5	119.6 (3)	C12—N8—C7	123.6 (3)
C3—C4—H4	120.2	C9—N8—C7	122.2 (3)
C5—C4—H4	120.2	N8—C9—C10	103.9 (3)
C2—C3—C4	117.2 (3)	N8—C9—H9A	111.0
C2—C3—C7	120.5 (3)	C10—C9—H9A	111.0
C4—C3—C7	122.3 (3)	N8—C9—H9B	111.0
N1—C2—C3	124.7 (3)	C10—C9—H9B	111.0
N1—C2—H2	117.6	H9A—C9—H9B	109.0
C3—C2—H2	117.6	N11—C10—C9	102.9(3)
C6—C5—C4	117.1 (3)	N11—C10—H10A	111.2
C6—C5—H5	121.4	C9—C10—H10A	111.2
C4—C5—H5	121.4	N11—C10—H10B	111.2
N1—C6—C5	125.5 (3)	C9—C10—H10B	111.2
N1—C6—C11	116.2 (3)	H10A—C10—H10B	109.1
C5—C6—C11	118.3 (3)	C12—N11—C10	112.8 (3)
N8—C7—C3	112.5 (3)	C12—N11—H11	114 (3)
N8—C7—H7A	109.1	C10—N11—H11	133 (3)
C3—C7—H7A	109.1	O12—C12—N11	127.2 (3)
N8—C7—H7B	109.1	O12—C12—N8	124.5 (3)
C3—C7—H7B	109.1	N11—C12—N8	108.3 (3)
H7A—C7—H7B	107.8		
C5—C4—C3—C2	0.6 (5)	C3—C7—N8—C12	134.0 (3)
C5—C4—C3—C7	-177.3 (3)	C3—C7—N8—C9	-64.8(4)
C6—N1—C2—C3	-0.5(5)	C12—N8—C9—C10	-4.1(4)
C4—C3—C2—N1	-0.1(5)	C7—N8—C9—C10	-167.3(3)
C7—C3—C2—N1	177.8 (3)	N8—C9—C10—N11	1.1 (4)
C3—C4—C5—C6	-0.4(5)	C9—C10—N11—C12	2.2 (4)
C2—N1—C6—C5	0.6 (5)	C10—N11—C12—O12	175.2 (4)
C2—N1—C6—C11	-179.4(2)	C10—N11—C12—N8	-4.9(4)
C4—C5—C6—N1	-0.2(5)	C9—N8—C12—O12	-174.4(3)
C4—C5—C6—C11	179.8 (3)	C7—N8—C12—O12	-11.5 (6)
C2—C3—C7—N8	115.6 (3)	C9—N8—C12—N11	5.7 (4)
C4—C3—C7—N8	-66.6 (4)	C7—N8—C12—N11	168.6 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N11—H11···O12 ⁱ	0.85 (5)	2.08 (5)	2.924 (4)	174 (5)
C4—H4···N1 ⁱⁱ	0.93	2.55	3.369 (5)	147

Symmetry codes: (i) -x-1, -y, -z+1; (ii) x-1, y, z.

Acta Cryst. (2012). E68, o1939 Sup-6