V = 2202.33 (8) Å³

Mo $K\alpha$ radiation

 $0.19 \times 0.16 \times 0.12 \text{ mm}$

12115 measured reflections

6922 independent reflections

5569 reflections with $I > 2\sigma(I)$

 $\mu = 1.18 \text{ mm}^{-3}$

T = 293 K

 $R_{\rm int} = 0.026$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2,2'-bipyridyl- $\kappa^2 N$,N')dichloridorhodium(III) perchlorate

Alla Dikhtiarenko,^a Laura Torre-Fernández,^b Santiago García-Granda,^b* José R. García^a and José Gimeno^a

^aDepartamento Química Orgánica e Inorgánica, Universidad de Oviedo, 33006 Oviedo, Spain, and ^bDepartamento de Ouímica Física y Analítica, Facultad de Química, Universidad de Oviedo-CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain

Correspondence e-mail: sgg@uniovi.es

Received 3 April 2012; accepted 25 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.042; wR factor = 0.081; data-toparameter ratio = 23.5.

The asymmetric unit of the title compound, [RhCl₂- $(C_{10}H_8N_2)_2$]ClO₄, consists of one unit of the cationic complex $[RhCl_2(bipy)_2]^+$ and one uncoordinated perchlorate anion. The Rh^{III} atom is coordinated by four N atoms from two bipyridyl ligands and two Cl atoms, forming a distorted octahedral environment. The Cl ligands are cis. Two intramolecular C-H···Cl hydrogen bonds occur in the cationic complex. In the crystal, molecules are linked together by a hydrogen-bond network involving the H atoms of bipyridyl rings and perchlorate anions. An O atom of the perchlorate anion is disordered over two sites, with an occupancy-factor ratio of 0.78 (3):0.22 (3).

Related literature

For potential applications of noble metal complexes of pyridyl ligands in biochemistry, catalysis and anticancer activity, see: Chifotides et al. (2004); Mbaye et al. (2003); Karidi et al. (2005); Tan et al. (2005). For their photochemical and photophysical properties, see: Forster & Rund (2003); Arachchige et al. (2008) and for their electrochemical properties, see: Rasmussen et al. (1990). For related structures, see: Al-Noaimi & Haddad (2007); Andansen & Josephsen (1971); Choudhury et al. (2006); De Munno et al. (1993); Figgis et al. (1985); Fontaine (2001); Gao & Ng (2010); Kramer & Straehle (1986); Sofetis et al. (2006); Strenger et al. (2000). For similar structures with platinum group metals, see: Lahuerta et al. (1991); Kim et al. (2009); Helberg et al. (1996); Prajapati et al. (2008); Eggleston et al. (1985).

Experimental

Crystal data

[RhCl₂(C₁₀H₈N₂)₂]ClO₄ $M_{r} = 585.63$ Orthorhombic, $P2_12_12_1$ a = 11.0344 (2) Å b = 11.6796 (2) Å c = 17.0884 (3) Å

Data collection

Agilent Xcalibur Ruby Gemini
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\min} = 0.973, \ T_{\max} = 1$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.081$	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
S = 1.02	Absolute structure: Flack (1983)
6922 reflections	2630 Friedel pairs
294 parameters	Flack parameter: 0.47 (3)
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Rh1-N2	2.019 (2)	Rh1-N4	2.038 (3)
Rh1-N1 Rh1-N3	2.023 (2) 2.037 (2)	Rh1-Cl3 Rh1-Cl2	2.3291 (9) 2.3344 (9)
N1-Rh1-N3	174.22 (10)	Cl3-Rh1-Cl2	91.18 (4)

able	2		
т 1		1	

H	yd	lrogen-	bond	geome	etry	(A,	0)
---	----	---------	------	-------	------	-----	---	---

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
C1-H1···Cl2	0.93	2.70	3.301 (4)	123
C11-H11···Cl3	0.93	2.76	3.358 (4)	123
$C3-H3 \cdot \cdot \cdot O1^i$	0.93	2.29	3.192 (5)	164
C8−H8···O1 ⁱⁱ	0.93	2.56	3.142 (6)	121
$C9-H9\cdots O1^{ii}$	0.93	2.58	3.154 (6)	120
$C13{-}H13{\cdot}{\cdot}{\cdot}O4^{iii}$	0.93	2.56	3.427 (6)	155
Symmetry codes: ($-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$.	(i) $-x + 2, y$	$+\frac{1}{2}, -z +\frac{3}{2};$	(ii) $x - \frac{1}{2}, -y - \frac{1}{2}$	$\frac{1}{2}, -z+1;$ (iii)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

metal-organic compounds

This work was supported by the Spanish MICINN (projects MAT2006–01997, FC-08-IB08–036 and MAT2010–15094) and FEDER. AD also thanks MICINN for their pre-doctoral FPU grant (AP2008–03942).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2059).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Al-Noaimi, M. & Haddad, S. F. (2007). Acta Cryst. E63, m2332.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Andansen, P. & Josephsen, J. (1971). Acta Chem. Scand. 25, 3255-3260.
- Arachchige, S. M., Brown, J. & Brewe, K. J. (2008). J. Photochem. Photobiol. A, **197**, 13–17.
- Chifotides, H. T., Fu, P. K. L., Dunbar, K. R. & Turro, C. (2004). *Inorg. Chem.* **43**, 1175–1183.
- Choudhury, S. R., Dutta, A., Mukhopadhyay, S., Lu, L.-P. & Zhu, M.-L. (2006). Acta Cryst. E62, m1489–m1491.
- De Munno, G., Nicolò, F. & Julve, M. (1993). Acta Cryst. C49, 1049-1052.
- Eggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). *Inorg. Chem.* 24, 4573–4580.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Figgis, B. N., Reynolds, P. A. & White, A. H. (1985). *Inorg. Chem.* 24, 3762–3770.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fontaine, F. G. (2001). Acta Cryst. E57, m270-m271.
- Forster, L. C. & Rund, J. V. (2003). Inorg. Chem. Commun. 6, 78-81.
- Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1692.
- Helberg, L. E., Orth, S. D., Sabat, M. & Harman, W. D. (1996). *Inorg. Chem.* **35**, 5584–5594.
- Karidi, K., Garoufis, A., Tsipis, A., Hadjiliadis, N., Dulk, H. & Reedijk, J. (2005). Dalton Trans. pp. 1176–1187.
- Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m180.
- Kramer, T. & Straehle, J. (1986). Z. Naturforsch. Teil B, 41, 692-696.
- Lahuerta, P., Latorre, J., Martínez-Máñez, R., García-Granda, S. & Gómez-Beltrán, F. (1991). Acta Cryst. C47, 519–522.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Mbaye, M. D., Demersement, B., Reneaud, J.-L., Toupet, L. & Bruneau, C. (2003). Angew. Chem. Int. Ed. 42, 5066–5068.
- Prajapati, R., Yadan, V. K., Dubey, S. K., Durham, B. & Mishra, L. (2008). Indian J. Chem. Sect. A, 47, 1780–1787.
- Rasmussen, S. C., Richter, M. M., Yi, E., Place, H. & Brewer, K. J. (1990). *Inorg. Chem.* 29, 3926–3932.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). *Inorg. Chim. Acta*, **359**, 3389–3395.
- Strenger, I., Rosu, T. & Negoiu, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 489–490.
- Tan, L. F., Chao, H., Li, H., Liu, Y. J., Sun, B., Wei, W. & Ji, L. N. (2005). J. Inorg. Biochem. 99, 513–520.

supporting information

Acta Cryst. (2012). E68, m713-m714 [doi:10.1107/S1600536812018685]

Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)dichloridorhodium(III) perchlorate

Alla Dikhtiarenko, Laura Torre-Fernández, Santiago García-Granda, José R. García and José Gimeno

S1. Comment

In recent years, noble metal complexes of pyridyl ligands have received much attention because of their rich electrochemical (Rasmussen *et al.*, 1990, photophysical (Forster & Rund, 2003) and photochemical (Arachchige *et al.*, 2008) properties, and their potential applications in catalysis (Mbaye *et al.*, 2003), biochemistry (Tan *et al.*, 2005; Chifotides *et al.*, 2004) and anticancer activity (Karidi *et al.*, 2005). Bipyridine (bipy) is one of the most commonly used bidentate ligand of this type in the formation of wide variety of transition metal complexes with a general formula of $[M^{II}(bipy)_2X_2]$ (M = Co, Ni, Mn, Fe) in which X is an coordinated anionic ligand such as CN, SCN and chloride (De Munno *et al.*, 1993; Eggleston *et al.*, 1985; Kramer & Straehle, 1986; Al-Noaimi and Haddad, 2007; Fontaine, 2001; Choudhury *et al.*, 2006; Gao & Ng, 2010) and complexes with cationic part $[M^{III}Cl_2(bipy)_2]^+$ (M = Re, Ru, Co, Ga) and any counter anion like Cl⁻, PF₆⁻ (Figgis *et al.*, 1985; Sofetis *et al.*, 2006; Andansen & Josephsen, 1971; Strenger *et al.*, 2000; Kim *et al.*, 2009; Prajapati *et al.*, 2008; Helberg *et al.*, 1996). The complex [RhCl₂(bipy)₂]Cl.2H₂O has also been obtained and crystallographycaly determined by Lahuerta *et al.*, 1991. Yet, no crystal structure has been reported for the cationic complex *cis-*[Rh(bipy)₂Cl ₂]⁺ in its perchlorate form as counter anion, therefore, we report the crystal structure of compound (I).

Complex (I) crystallizes in the orthorhombic space group $P2_12_12_1$. The molecular structure of (I) depicted in Figure 1. It has a distorted octahedral geometry with the two chloride ions in *cis* positions. Selected bond lengths for the complex are given in Table 1. The Rh–N axial bond distance (2.038 (3) Å) is slightly longer than Rh–N equatorial bonds (average 2.026 (5) Å). Its may be well compared with the negligible difference between equatorial and axial M–N bonds distances seen in the analogous complexes of platinum metal group (Lahuerta et al., 1991; Kim et al., 2009; Helberg et al., 1996; Prajapati et al., 2008; Eggleston et al., 1985), but greater distortion observed in majority of transition metal complexes (Strenger et al., 2000; Fontaine, 2001; Kramer & Straehle, 1986; Sofetis et al., 2006; Figgis et al., 1985; Choudhury et al., 2006; Gao & Ng, 2010). The Rh-Cl bond distances in (I) are 2.3291 (9) (equatorial) and 2.3344 (9) Å (axial). The N_{ea} -Rh- N_{ea} angle is 174.22 (10)° and its distorted from linearity by approximately 6 °. Also Cl_{ea} -Rh- Cl_{ax} angle (91.18 (4) °) is nearly octahedral. The *cis* isomerization of cationic complex [RhCl₂(bipy)₂]⁺ is stabilized by short contacts. Coordinated chlorides which situated in *cis* position to respect to each other make up short contact Cl2...H1 and Cl3...H11 with distances 2.7 and 2.76 Å, respectively (Tabl. 2). The crystal lattice of (I) is made up of well separated ClO_4 anions and $[RhCl_2(bipy)_2]^+$ cations. The perchlorate anion contribute to forming extensive hydrogen bonding net linked together cationic and anionic parts of the structure. The interactions involve the hydrogen bonding between H atoms of bipy ring with oxygen atoms uncoordinated perchlorate anion. Each oxygen atoms participates in four hydrogen bonds to H atoms of arvl groups (Tabl. 2). The atom O2 of the perchlorate anion is disordered and splited over two sites with refined occupancy ratio of 0.78(3):0.22(3).

S2. Experimental

To a solution of RhCl₃.xH₂O (0.05 g, 0.231 mmol) and KClO₄ (0.09 g, 0.693 mmol) in H₂O (10 ml) was added 2,2'-bipyridine (0.04 g, 0.462 mmol) in CH₃OH (10 ml), and was stirred for 2 h to yellow solution resulted. Yellowish rhombohedral crystals suitable for X-ray analysis were obtained by slow evaporation during two weeks. RhCl₃.xH₂O purchased from Johnson Matthey, all other reagents was obtained commercially from Sigma-Aldrich and used without futher purification.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$]. The value of the Flack parameter, 0.47 (3) suggests that the crystal is a racemic twin.

Figure 1

A view of [RhCl₂(C₁₀H₈N₂)₂]ClO₄ asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)dichloridorhodium(III) perchlorate

Crystal data	
$[RhCl_2(C_{10}H_8N_2)_2]ClO_4$	F(000) = 1168
$M_r = 585.63$	$D_{\rm x} = 1.766 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.7107$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 4926 reflections
a = 11.0344 (2) Å	$\theta = 3.5 - 32.1^{\circ}$
b = 11.6796 (2) Å	$\mu = 1.18 \text{ mm}^{-1}$
c = 17.0884 (3) Å	T = 293 K
V = 2202.33 (8) Å ³	Rhombohedron, yellow
Z = 4	$0.19 \times 0.16 \times 0.12 \text{ mm}$
Data collection	
Agilent Xcalibur Ruby Gemini diffractometer	Detector resolution: 10.2673 pixels mm ⁻¹ ω scans
Radiation source: Enhance (Mo) X-ray Source	Absorption correction: multi-scan
Graphite monochromator	(CrysAlis PRO; Agilent, 2011)

$T_{\min} = 0.973, T_{\max} = 1$ 12115 measured reflections 6922 independent reflections 5569 reflections with $I > 2\sigma(I)$	$\theta_{\text{max}} = 32.1^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ $h = -8 \rightarrow 16$ $k = -17 \rightarrow 10$ $l = -22 \rightarrow 25$
$R_{\rm int} = 0.026$	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0292P)^2 + 0.1669P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.042$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.081$	$\Delta ho_{ m max} = 0.75 \ { m e} \ { m \AA}^{-3}$
S = 1.02	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
6922 reflections	Absolute structure: Flack (1983), 2630 Friedel
294 parameters	pairs
0 restraints	Absolute structure parameter: 0.47 (3)
H-atom parameters constrained	_ 、 , ,

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Rh1	0.98325 (2)	0.241474 (19)	0.367163 (12)	0.04095 (7)	
Cl1	0.97063 (10)	-0.18258 (8)	0.63515 (5)	0.0629 (2)	
Cl2	1.10302 (9)	0.40548 (7)	0.35644 (6)	0.0609 (2)	
C13	0.80775 (9)	0.35183 (8)	0.37395 (6)	0.0603 (2)	
N1	0.9798 (2)	0.2369 (2)	0.48547 (13)	0.0439 (5)	
N2	0.8794 (2)	0.1010 (2)	0.38286 (14)	0.0426 (6)	
N3	0.9942 (3)	0.2300 (2)	0.24844 (13)	0.0467 (6)	
N4	1.1338 (3)	0.1414 (2)	0.35733 (15)	0.0455 (6)	
01	1.0370 (4)	-0.2722 (3)	0.6687 (2)	0.1228 (15)	
O2A	0.9396 (14)	-0.1068 (7)	0.6981 (7)	0.102 (3)	0.78 (3)
O2B	0.891 (4)	-0.123 (3)	0.6744 (18)	0.102 (3)	0.22 (3)
O3	1.0402 (4)	-0.1234 (3)	0.57914 (19)	0.1075 (12)	
O4	0.8704 (4)	-0.2320 (5)	0.5957 (2)	0.1495 (17)	
C1	1.0374 (3)	0.3097 (3)	0.5332 (2)	0.0557 (9)	
H1	1.0805	0.3705	0.5117	0.067*	
C2	1.0344 (4)	0.2968 (4)	0.6128 (2)	0.0654 (11)	
H2	1.0755	0.3481	0.6448	0.078*	
C3	0.9706 (4)	0.2082 (4)	0.6450 (2)	0.0672 (11)	
Н3	0.968	0.1985	0.699	0.081*	
C4	0.9098 (4)	0.1331 (3)	0.59588 (19)	0.0586 (9)	
H4	0.8657	0.0725	0.6166	0.07*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C5	0.9153 (3)	0.1492 (3)	0.51615 (17)	0.0446 (7)
C6	0.8570 (3)	0.0741 (2)	0.45826 (17)	0.0442 (7)
C7	0.7849 (4)	-0.0179 (3)	0.4774 (2)	0.0546 (9)
H7	0.7708	-0.036	0.5297	0.065*
C8	0.7341 (4)	-0.0825 (3)	0.4193 (2)	0.0665 (11)
H8	0.6858	-0.1452	0.4316	0.08*
С9	0.7550 (4)	-0.0539 (3)	0.3429 (2)	0.0637 (10)
Н9	0.72	-0.0963	0.3028	0.076*
C10	0.8279 (3)	0.0380 (3)	0.3260 (2)	0.0535 (9)
H10	0.8421	0.0572	0.274	0.064*
C11	0.9169 (4)	0.2771 (3)	0.1977 (2)	0.0629 (10)
H11	0.8496	0.3163	0.2166	0.075*
C12	0.9344 (4)	0.2689 (4)	0.1183 (2)	0.0719 (11)
H12	0.8797	0.3022	0.0837	0.086*
C13	1.0325 (5)	0.2118 (3)	0.0909 (2)	0.0726 (13)
H13	1.0453	0.2058	0.0373	0.087*
C14	1.1141 (4)	0.1621 (3)	0.1429 (2)	0.0632 (10)
H14	1.182	0.1231	0.1249	0.076*
C15	1.0912 (3)	0.1724 (3)	0.22194 (18)	0.0461 (8)
C16	1.1686 (3)	0.1207 (3)	0.28234 (18)	0.0464 (8)
C17	1.2693 (4)	0.0539 (3)	0.2680 (2)	0.0595 (9)
H17	1.2956	0.0422	0.2169	0.071*
C18	1.3302 (4)	0.0049 (3)	0.3289 (3)	0.0698 (12)
H18	1.3968	-0.042	0.3196	0.084*
C19	1.2925 (4)	0.0256 (3)	0.4035 (3)	0.0686 (11)
H19	1.3331	-0.0074	0.4455	0.082*
C20	1.1956 (4)	0.0945 (3)	0.4161 (2)	0.0563 (9)
H20	1.1715	0.1094	0.4673	0.068*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.04542 (12)	0.04254 (12)	0.03489 (10)	-0.00107 (11)	-0.00011 (10)	0.00272 (10)
Cl1	0.0798 (6)	0.0651 (5)	0.0438 (4)	0.0109 (5)	-0.0048 (5)	0.0050 (4)
Cl2	0.0664 (6)	0.0557 (5)	0.0606 (5)	-0.0147 (4)	0.0015 (5)	0.0072 (4)
C13	0.0580 (5)	0.0612 (5)	0.0618 (5)	0.0098 (4)	0.0026 (5)	0.0058 (5)
N1	0.0474 (14)	0.0471 (13)	0.0370 (11)	0.0040 (18)	-0.0028 (10)	0.0026 (10)
N2	0.0443 (15)	0.0422 (13)	0.0414 (15)	-0.0005 (11)	0.0015 (12)	0.0017 (11)
N3	0.0537 (16)	0.0491 (14)	0.0375 (12)	-0.0050 (17)	-0.0008 (11)	0.0049 (11)
N4	0.0483 (16)	0.0430 (13)	0.0451 (15)	-0.0016 (12)	-0.0021 (13)	0.0042 (12)
01	0.157 (4)	0.120 (3)	0.091 (2)	0.073 (3)	0.009 (2)	0.032 (2)
O2A	0.160 (8)	0.084 (3)	0.063 (4)	0.040 (4)	0.005 (4)	-0.011 (3)
O2B	0.160 (8)	0.084 (3)	0.063 (4)	0.040 (4)	0.005 (4)	-0.011 (3)
03	0.123 (3)	0.108 (3)	0.092 (2)	-0.013 (2)	0.025 (2)	0.0163 (19)
O4	0.137 (4)	0.207 (5)	0.104 (3)	-0.053 (4)	-0.027 (3)	0.028 (3)
C1	0.057 (2)	0.062 (2)	0.0480 (18)	-0.0090 (18)	0.0027 (17)	-0.0091 (15)
C2	0.063 (3)	0.085 (3)	0.048 (2)	0.002 (2)	-0.0115 (18)	-0.0183 (19)
C3	0.070 (3)	0.090 (3)	0.0414 (18)	0.009 (2)	-0.0019 (19)	-0.0028 (17)

supporting information

C4	0.069 (3)	0.065 (2)	0.0419 (18)	0.008 (2)	0.0038 (18)	0.0098 (17)
C5	0.0456 (19)	0.0481 (17)	0.0401 (16)	0.0076 (15)	0.0025 (14)	0.0040 (14)
C6	0.051 (2)	0.0390 (16)	0.0432 (16)	0.0056 (15)	0.0066 (15)	0.0031 (13)
C7	0.067 (3)	0.0458 (19)	0.0512 (18)	-0.0012 (17)	0.0086 (18)	0.0064 (16)
C8	0.071 (3)	0.049 (2)	0.079 (3)	-0.0105 (19)	0.011 (2)	0.0006 (19)
C9	0.069 (3)	0.058 (2)	0.063 (2)	-0.009 (2)	0.0035 (19)	-0.0161 (19)
C10	0.060(2)	0.056 (2)	0.0453 (18)	-0.0061 (18)	0.0009 (17)	-0.0073 (16)
C11	0.071 (3)	0.069 (2)	0.0481 (19)	0.004 (2)	-0.0041 (18)	0.0063 (17)
C12	0.090 (3)	0.079 (3)	0.046 (2)	0.004 (2)	-0.0136 (19)	0.007 (2)
C13	0.108 (4)	0.070 (2)	0.0402 (19)	-0.006 (2)	0.002 (2)	-0.0029 (17)
C14	0.081 (3)	0.062 (2)	0.047 (2)	-0.004 (2)	0.011 (2)	-0.0068 (17)
C15	0.056 (2)	0.0385 (16)	0.0441 (17)	-0.0077 (15)	0.0018 (16)	-0.0020 (13)
C16	0.054 (2)	0.0384 (16)	0.0467 (18)	-0.0089 (15)	0.0023 (15)	-0.0056 (13)
C17	0.060 (2)	0.055 (2)	0.063 (2)	-0.0002 (19)	0.0051 (19)	-0.0151 (18)
C18	0.057 (3)	0.054 (2)	0.098 (3)	0.0120 (19)	-0.003 (2)	-0.013 (2)
C19	0.061 (3)	0.061 (2)	0.084 (3)	0.012 (2)	-0.014 (2)	0.011 (2)
C20	0.060 (2)	0.059 (2)	0.050 (2)	0.0023 (18)	-0.0066 (18)	0.0101 (17)

Geometric parameters (Å, °)

Rh1—N2	2.019 (2)	C4—H4	0.93
Rh1—N1	2.023 (2)	C5—C6	1.470 (4)
Rh1—N3	2.037 (2)	C6—C7	1.377 (5)
Rh1—N4	2.038 (3)	C7—C8	1.369 (5)
Rh1—Cl3	2.3291 (9)	С7—Н7	0.93
Rh1—Cl3	2.3291 (9)	C8—C9	1.366 (5)
Rh1—Cl2	2.3344 (9)	C8—H8	0.93
Rh1—Cl2	2.3344 (9)	C9—C10	1.373 (5)
Cl1—O2B	1.31 (3)	С9—Н9	0.93
Cl101	1.401 (3)	C10—H10	0.93
Cl1—O3	1.408 (3)	C11—C12	1.375 (5)
Cl1—O4	1.418 (4)	C11—H11	0.93
Cl1—O2A	1.434 (9)	C12—C13	1.354 (6)
N1C1	1.338 (4)	C12—H12	0.93
N1—C5	1.353 (4)	C13—C14	1.392 (6)
N2-C10	1.344 (4)	C13—H13	0.93
N2—C6	1.349 (4)	C14—C15	1.379 (5)
N3—C11	1.335 (4)	C14—H14	0.93
N3—C15	1.343 (4)	C15—C16	1.469 (5)
N4—C20	1.332 (4)	C16—C17	1.380 (5)
N4—C16	1.359 (4)	C17—C18	1.365 (5)
C1—C2	1.369 (5)	C17—H17	0.93
C1—H1	0.93	C18—C19	1.362 (6)
C2—C3	1.367 (6)	C18—H18	0.93
С2—Н2	0.93	C19—C20	1.356 (5)
C3—C4	1.387 (5)	C19—H19	0.93
С3—Н3	0.93	C20—H20	0.93
C4—C5	1.377 (4)		

N2—Rh1—N1	80.50 (10)	C2—C3—C4	118.9 (3)
N2—Rh1—N3	96.45 (10)	С2—С3—Н3	120.5
N1—Rh1—N3	174.22 (10)	С4—С3—Н3	120.5
N2—Rh1—N4	90.41 (11)	C5—C4—C3	119.5 (4)
N1—Rh1—N4	94.74 (10)	C5—C4—H4	120.3
N3—Rh1—N4	80.32 (11)	C3—C4—H4	120.3
N2—Rh1—Cl3	88.36 (8)	N1C5C4	120.6 (3)
N1—Rh1—Cl3	87.08 (7)	N1C5C6	114.9 (3)
N3—Rh1—Cl3	97.78 (8)	C4—C5—C6	124.4 (3)
N4—Rh1—Cl3	177.61 (8)	N2	121.0 (3)
N2—Rh1—Cl3	88.36 (8)	N2	115.1 (3)
N1—Rh1—Cl3	87.08 (7)	C7—C6—C5	123.9 (3)
N3—Rh1—Cl3	97.78 (8)	C8—C7—C6	119.6 (3)
N4—Rh1—Cl3	177.61 (8)	С8—С7—Н7	120.2
Cl3—Rh1—Cl3	0.00 (5)	С6—С7—Н7	120.2
N2—Rh1—Cl2	176.85 (7)	C9—C8—C7	119.3 (4)
N1—Rh1—Cl2	96.36 (8)	С9—С8—Н8	120.3
N3—Rh1—Cl2	86.69 (7)	С7—С8—Н8	120.3
N4—Rh1—Cl2	90.16 (8)	C8—C9—C10	119.4 (4)
Cl3—Rh1—Cl2	91.18 (4)	С8—С9—Н9	120.3
Cl3—Rh1—Cl2	91.18 (4)	С10—С9—Н9	120.3
N2—Rh1—Cl2	176.85 (7)	N2-C10-C9	121.5 (3)
N1—Rh1—Cl2	96.36 (8)	N2-C10-H10	119.2
N3—Rh1—Cl2	86.69 (7)	C9—C10—H10	119.2
N4—Rh1—Cl2	90.16 (8)	N3—C11—C12	121.5 (4)
Cl3—Rh1—Cl2	91.18 (4)	N3—C11—H11	119.2
Cl3—Rh1—Cl2	91.18 (4)	C12—C11—H11	119.2
Cl2—Rh1—Cl2	0.00 (5)	C13—C12—C11	119.2 (4)
O2B—Cl1—O1	122.6 (14)	C13—C12—H12	120.4
O2B—C11—O3	117.0 (14)	C11—C12—H12	120.4
O1—C11—O3	111.1 (2)	C12—C13—C14	120.1 (3)
O2B—C11—O4	86 (2)	С12—С13—Н13	119.9
O1—C11—O4	107.4 (3)	C14—C13—H13	119.9
O3—Cl1—O4	107.5 (2)	C15—C14—C13	118.1 (4)
O1—C11—O2A	106.2 (5)	C15—C14—H14	121
O3—Cl1—O2A	109.7 (4)	C13—C14—H14	121
O4—C11—O2A	115.0 (7)	N3—C15—C14	121.3 (3)
C1—N1—C5	119.7 (3)	N3—C15—C16	115.6 (3)
C1—N1—Rh1	125.7 (2)	C14—C15—C16	123.1 (3)
C5—N1—Rh1	114.7 (2)	N4—C16—C17	119.7 (3)
C10—N2—C6	119.1 (3)	N4—C16—C15	115.2 (3)
C10—N2—Rh1	126.0 (2)	C17—C16—C15	125.1 (3)
C6—N2—Rh1	114.8 (2)	C18—C17—C16	119.9 (4)
C11—N3—C15	119.8 (3)	C18—C17—H17	120.1
C11—N3—Rh1	125.6 (2)	C16—C17—H17	120.1
C15—N3—Rh1	114.6 (2)	C19—C18—C17	119.3 (4)
C20—N4—C16	119.6 (3)	C19—C18—H18	120.4

C20—N4—Rh1	126.2 (2)	C17—C18—H18	120.4
C16—N4—Rh1	114.2 (2)	C20—C19—C18	119.7 (4)
N1—C1—C2	121.6 (3)	С20—С19—Н19	120.1
N1—C1—H1	119.2	С18—С19—Н19	120.1
C2-C1-H1	119.2	N4—C20—C19	121.8 (4)
$C_3 - C_2 - C_1$	119.8 (4)	N4—C20—H20	119.1
C_{3} C_{2} H_{2}	120.1	C19-C20-H20	119.1
C1 - C2 - H2	120.1		11/11
	120.1		
N1—Rh1—Cl2—Cl2	0E1 (8)	Cl2—Rh1—N4—C16	-844(2)
$N_3 = Rh_1 = C_{12} = C_{12}$	0.00(2)	C_{2} N1- C_{1} - C_{2}	10(5)
$N4$ _Rh1_Cl2_Cl2	0.00(2)	Rh1 N1 C1 C2	-176.9(3)
Cl_3 Rh1 Cl_2 Cl_2	0.00(2)	N1 C1 C2 C3	-0.4(6)
$C_{13} = R_{11} = C_{12} = C_{12}$	0.00(2)	$C_1 = C_2 = C_3$	-0.1(6)
N2 Ph1 C13 C13	0.00(2)	$C_1 - C_2 - C_3 - C_4$	0.1(0)
N1 Ph1 C12 C13	0.00(3)	$C_2 - C_3 - C_4 - C_5$	-0.0(5)
N1 - KIII - CI3 - CI3 $N2 - Dh1 - CI2 - CI2$	0.00(3)	CI = NI = C5 = C4	0.3(3)
$N_{3} = K_{11} = C_{13} = C_{13}$	0.00(3)	$\mathbf{K}_{\mathbf{M}} = \mathbf{N}_{\mathbf{M}} = \mathbf{N}_{\mathbf{M}} = \mathbf{N}_{\mathbf{M}} = \mathbf{N}_{\mathbf{M}}$	177.2(3)
C12 - R11 - C13 - C13	0.00(3)	CI - NI - C5 - C0	-1/9.4(3)
CI2— RII — $CI3$ — $CI3$	0.00(3)	$R_{11} = N_{1} = C_{0}$	-1.3(3)
N2—Rn1—N1—C1	1/8.2(3)	$C_3 = C_4 = C_5 = N_1$	0.3(5)
N4— $Kn1$ — $N1$ — $C1$	88.5 (3)	$C_3 - C_4 - C_5 - C_6$	1/8./(3)
CI3— RhI — NI — CI	-93.0 (3)	C10 - N2 - C6 - C7	1.5 (5)
Cl3—Rh1—N1—Cl	-93.0 (3)	Rh1—N2—C6—C7	178.3 (3)
Cl2—Rh1—N1—C1	-2.2 (3)	C10—N2—C6—C5	-178.8 (3)
Cl2—Rh1—N1—C1	-2.2 (3)	Rh1—N2—C6—C5	-2.0 (4)
N2—Rh1—N1—C5	0.2 (2)	N1—C5—C6—N2	2.2 (4)
N4—Rh1—N1—C5	-89.4 (2)	C4—C5—C6—N2	-176.2(3)
Cl3—Rh1—N1—C5	89.0 (2)	N1—C5—C6—C7	-178.2(3)
Cl3—Rh1—N1—C5	89.0 (2)	C4—C5—C6—C7	3.4 (5)
Cl2—Rh1—N1—C5	179.9 (2)	N2	-0.7 (6)
Cl2—Rh1—N1—C5	179.9 (2)	C5—C6—C7—C8	179.7 (3)
N1—Rh1—N2—C10	177.6 (3)	C6—C7—C8—C9	-0.6 (6)
N3—Rh1—N2—C10	-7.4 (3)	C7—C8—C9—C10	1.0 (6)
N4—Rh1—N2—C10	-87.7 (3)	C6—N2—C10—C9	-1.1 (5)
Cl3—Rh1—N2—C10	90.3 (3)	Rh1—N2—C10—C9	-177.5 (3)
Cl3—Rh1—N2—C10	90.3 (3)	C8—C9—C10—N2	-0.1 (6)
N1—Rh1—N2—C6	1.1 (2)	C15—N3—C11—C12	-0.5 (5)
N3—Rh1—N2—C6	176.1 (2)	Rh1—N3—C11—C12	177.1 (3)
N4—Rh1—N2—C6	95.8 (2)	N3—C11—C12—C13	0.0 (6)
Cl3—Rh1—N2—C6	-86.3 (2)	C11—C12—C13—C14	0.0 (6)
Cl3—Rh1—N2—C6	-86.3 (2)	C12-C13-C14-C15	0.5 (6)
N2—Rh1—N3—C11	89.5 (3)	C11—N3—C15—C14	1.0 (5)
N4—Rh1—N3—C11	178.8 (3)	Rh1-N3-C15-C14	-176.9 (3)
Cl3—Rh1—N3—C11	0.3 (3)	C11—N3—C15—C16	-178.1 (3)
Cl3—Rh1—N3—C11	0.3 (3)	Rh1—N3—C15—C16	4.0 (3)
Cl2—Rh1—N3—C11	-90.4 (3)	C13—C14—C15—N3	-1.0 (5)
Cl2—Rh1—N3—C11	-90.4 (3)	C13—C14—C15—C16	178.1 (3)
N2—Rh1—N3—C15	-92.7 (2)	C20—N4—C16—C17	-1.7 (5)

N4—Rh1—N3—C15	-3.4 (2)	Rh1—N4—C16—C17	-179.9 (2)
Cl3—Rh1—N3—C15	178.0 (2)	C20—N4—C16—C15	177.4 (3)
Cl3—Rh1—N3—C15	178.0 (2)	Rh1-N4-C16-C15	-0.8 (3)
Cl2—Rh1—N3—C15	87.3 (2)	N3-C15-C16-N4	-2.1 (4)
Cl2—Rh1—N3—C15	87.3 (2)	C14—C15—C16—N4	178.8 (3)
N2-Rh1-N4-C20	-79.4 (3)	N3-C15-C16-C17	177.0 (3)
N1—Rh1—N4—C20	1.1 (3)	C14-C15-C16-C17	-2.2 (5)
N3—Rh1—N4—C20	-175.9 (3)	N4-C16-C17-C18	2.8 (5)
Cl2—Rh1—N4—C20	97.5 (3)	C15—C16—C17—C18	-176.2 (3)
Cl2—Rh1—N4—C20	97.5 (3)	C16—C17—C18—C19	-1.8 (6)
N2-Rh1-N4-C16	98.7 (2)	C17—C18—C19—C20	-0.2 (7)
N1—Rh1—N4—C16	179.2 (2)	C16—N4—C20—C19	-0.4 (5)
N3—Rh1—N4—C16	2.3 (2)	Rh1-N4-C20-C19	177.6 (3)
Cl2—Rh1—N4—C16	-84.4 (2)	C18—C19—C20—N4	1.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1…Cl2	0.93	2.7	3.301 (4)	123
C11—H11···Cl3	0.93	2.76	3.358 (4)	123
C3—H3···O1 ⁱ	0.93	2.29	3.192 (5)	164
C8—H8····O1 ⁱⁱ	0.93	2.56	3.142 (6)	121
С9—Н9…О1 ^{іі}	0.93	2.58	3.154 (6)	120
C13—H13…O4 ⁱⁱⁱ	0.93	2.56	3.427 (6)	155

Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) x-1/2, -y-1/2, -z+1; (iii) -x+2, y+1/2, -z+1/2.