metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(nitrato-κO)copper(II)]-bis­­[μ-1,3-bis­­(imidazol-1-yl)-5-methyl­benzene-κ2N3:N3′]] dihydrate]

aSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, People's Republic of China
*Correspondence e-mail: liugx@njxzc.edu.cn

(Received 5 May 2012; accepted 24 May 2012; online 31 May 2012)

In the title complex, {[Cu(NO3)2(C13H12N4)2]·2H2O}n, the CuII atom is located on a crystallographic center of symmetry and adopts an N4O2 octa­hedral coordination geometry with four imidazole N atoms in the equatorial sites and two O atoms in the axial sites. The dihedral angles between the central benzene ring and the imidazole rings are 4.93 (11) and 46.08 (12)°. The 1,3-bis­(imidazol-1-yl)-5-methyl­benzene ligand is bis-monodentate, linking symmetry-related CuII atoms into sheets in the bc plane. These sheets are further bridged into a three-dimensional supra­molecular structure by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the coordination chemistry of imidazole derivates, see: Huang et al. (2006[Huang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 1557-1559.]); Wang et al. (2008[Wang, B., Côté, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Nature (London), 453, 207-211.]); Tian et al. (2007[Tian, Y. Q., Zhao, Y. M., Chen, Z. X., Zhang, G. N., Weng, L. H. & Zhao, D. Y. (2007). Chem. Eur. J. 13, 4146-4154.]); Jin et al. (2008[Jin, C. M., Wu, L. Y., Lu, H. & Xu, Y. (2008). Cryst. Growth Des. 8, 215-218.]). For imidazole ligands bearing rigid spacers, see: Qi et al. (2008[Qi, Y., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 3602-3608.]); Li et al. (2007[Li, L., Hu, T. L., Li, J. R., Wang, D. Z., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 412-420.]); Zhang et al. (2008[Zhang, S., Lan, J., Mao, Z., Xie, R. & You, J. (2008). Cryst. Growth Des. 8, 3134-3136.]). For the synthesis, see: Altman & Buchwald (2006[Altman, R. A. & Buchwald, S. L. (2006). Org. Lett. 8, 2779-2782.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C13H12N4)2]·2H2O

  • Mr = 672.12

  • Monoclinic, P 21 /c

  • a = 11.585 (4) Å

  • b = 9.652 (3) Å

  • c = 15.450 (4) Å

  • β = 123.604 (17)°

  • V = 1438.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 0.865

  • 10260 measured reflections

  • 2672 independent reflections

  • 2114 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.06

  • 2672 reflections

  • 214 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.88 (2) 2.04 (2) 2.909 (6) 170 (4)
O1W—H1WB⋯O3i 0.86 (2) 2.20 (3) 3.020 (5) 159 (5)
O1W—H1WB⋯O2i 0.86 (2) 2.42 (4) 3.142 (4) 142 (5)
C2—H2⋯O1Wii 0.93 2.36 3.230 (5) 156
C3—H3⋯O1iii 0.93 2.27 3.186 (4) 167
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole has been well used in crystal engineering, and some zeolite-like porous frameworks with divalent and tetrahedral metal ions with this ligand have been reported (Huang et al., 2006; Wang et al., 2008; Tian et al., 2007). Meanwhile, a large number of imidazole-containing flexible ligands have been extensively studied, and many fascinating coordination polymers based on such poly(imidazole) ligands have been synthesized (Jin et al., 2008). However, to the best of our knowledge, the research on imidazole ligands bearing rigid spacers is still less developed (Qi et al., 2008; Li et al., 2007; Zhang et al., 2008).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group P21/c. The geometry of the CuII ion is surrounded by four imidazole rings of distinct L ligands and two nitrate anions, which illustrates a slightly distorted octahedral coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinated CuII center is connected by the bent ligand L into a two-dimensional sheets in the bc plane. Within the ligand, the dihedral angle between the central benzene ring and terminal imidazole ring is 4.93 (11) and 46.08 (12), respectively. These sheets are further bridged into a three-dimensional supramolecular structure by O—H···O and C—H···O hydrogen bonds (Fig. 3).

Related literature top

For background to the coordination chemistry of imidazole derivates, see: Huang et al. (2006); Wang et al. (2008); Tian et al. (2007); Jin et al. (2008). For imidazole ligands bearing rigid spacers, see: Qi et al. (2008); Li et al. (2007); Zhang et al. (2008). For the synthesis, see: Altman et al. (2006).

Experimental top

The ligand was obtained according to the reported procedure (Altman et al., 2006). A mixture of CH3OH and H2O (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of Cu(NO3)2 (0.02 mmol) in H2O (6 ml). Then a solution of 5-methyl-1,3-bis(imidazol-1-yl)benzene (L, 0.06 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After two weeks, blue blocks of (I) appeared at the boundary. Yield: ~40% (based on L).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title complex with displacement ellipsoids shown at the 30% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Lateral view of the two-dimensional sheet in the bc plane of the title complex. Hydrogen atoms, water molecules and nitrate anions are omitted for clarity.
[Figure 3] Fig. 3. The packing diagram of the title complex, showing the hydrogen bonding as dashed lines.
catena-Poly[[[bis(nitrato-κO)copper(II)]-bis[µ-1,3- bis(imidazol-1-yl)-5-methylbenzene-κ2N3:N3']] dihydrate] top
Crystal data top
[Cu(NO3)2(C13H12N4)2]·2H2OF(000) = 694
Mr = 672.12Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4382 reflections
a = 11.585 (4) Åθ = 2.6–26.1°
b = 9.652 (3) ŵ = 0.83 mm1
c = 15.450 (4) ÅT = 293 K
β = 123.604 (17)°Block, blue
V = 1438.9 (8) Å30.22 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2672 independent reflections
Radiation source: sealed tube2114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1314
Tmin = 0.839, Tmax = 0.865k = 1111
10260 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0393P)2 + 1.4695P]
where P = (Fo2 + 2Fc2)/3
2672 reflections(Δ/σ)max = 0.002
214 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(NO3)2(C13H12N4)2]·2H2OV = 1438.9 (8) Å3
Mr = 672.12Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.585 (4) ŵ = 0.83 mm1
b = 9.652 (3) ÅT = 293 K
c = 15.450 (4) Å0.22 × 0.20 × 0.18 mm
β = 123.604 (17)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2672 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2114 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.865Rint = 0.039
10260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
2672 reflectionsΔρmin = 0.51 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00001.00000.50000.02941 (15)
N10.1444 (2)0.9308 (2)0.64001 (17)0.0311 (5)
N20.2629 (2)0.9008 (2)0.80892 (16)0.0283 (5)
N30.1879 (2)1.1172 (2)1.05555 (16)0.0310 (5)
N40.0729 (2)1.3057 (2)1.04231 (17)0.0333 (5)
N50.1839 (3)0.9479 (3)0.3683 (2)0.0465 (6)
O10.1000 (3)0.8849 (3)0.28647 (19)0.0649 (7)
O20.1663 (2)0.9523 (3)0.44070 (18)0.0589 (6)
O30.2867 (4)1.0002 (4)0.3790 (3)0.1209 (15)
O1W0.5399 (4)0.9268 (4)0.3928 (3)0.0902 (10)
C10.2547 (3)0.8473 (3)0.6687 (2)0.0422 (7)
H10.27560.80950.62350.051*
C20.3288 (3)0.8274 (3)0.7721 (2)0.0432 (7)
H20.40890.77450.81100.052*
C30.1522 (3)0.9612 (3)0.7259 (2)0.0350 (6)
H30.08921.01720.72900.042*
C40.3023 (3)0.9164 (3)0.91399 (19)0.0280 (6)
C50.4142 (3)0.8449 (3)0.9937 (2)0.0316 (6)
H50.46390.78470.97910.038*
C60.4530 (3)0.8625 (3)1.0961 (2)0.0309 (6)
C70.3782 (3)0.9530 (3)1.1169 (2)0.0310 (6)
H70.40330.96671.18480.037*
C80.2661 (3)1.0225 (2)1.0358 (2)0.0297 (6)
C90.2265 (3)1.0052 (3)0.9345 (2)0.0305 (6)
H90.15021.05230.88080.037*
C100.5755 (3)0.7855 (3)1.1834 (2)0.0436 (7)
H10A0.61860.84051.24550.065*
H10B0.64110.76761.16520.065*
H10C0.54490.69931.19510.065*
C110.1473 (3)1.2442 (3)1.0130 (2)0.0359 (6)
H110.16891.28320.96860.043*
C120.0659 (3)1.2134 (3)1.1069 (2)0.0372 (6)
H120.01941.22871.13950.045*
C130.1364 (3)1.0975 (3)1.1159 (2)0.0363 (6)
H130.14781.01951.15530.044*
H1WA0.469 (3)0.958 (4)0.393 (3)0.071 (14)*
H1WB0.598 (5)0.964 (5)0.452 (2)0.108 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0332 (3)0.0317 (3)0.0254 (3)0.0040 (2)0.0176 (2)0.00066 (19)
N10.0347 (12)0.0316 (12)0.0307 (12)0.0004 (10)0.0205 (10)0.0015 (10)
N20.0314 (12)0.0295 (11)0.0269 (11)0.0031 (9)0.0180 (10)0.0017 (9)
N30.0381 (12)0.0306 (12)0.0301 (12)0.0057 (10)0.0225 (11)0.0020 (9)
N40.0379 (13)0.0343 (12)0.0307 (12)0.0047 (10)0.0208 (11)0.0004 (10)
N50.0402 (14)0.0553 (16)0.0518 (17)0.0045 (13)0.0302 (14)0.0115 (14)
O10.0625 (16)0.0795 (18)0.0558 (15)0.0080 (14)0.0348 (14)0.0128 (14)
O20.0598 (15)0.0764 (16)0.0548 (15)0.0019 (12)0.0408 (13)0.0031 (12)
O30.087 (2)0.180 (4)0.112 (3)0.049 (2)0.066 (2)0.009 (2)
O1W0.089 (3)0.090 (2)0.088 (3)0.026 (2)0.047 (2)0.026 (2)
C10.0524 (18)0.0464 (17)0.0377 (16)0.0166 (14)0.0311 (15)0.0048 (13)
C20.0470 (17)0.0500 (18)0.0392 (17)0.0212 (14)0.0280 (15)0.0076 (14)
C30.0363 (15)0.0385 (15)0.0329 (15)0.0069 (12)0.0209 (13)0.0012 (12)
C40.0312 (13)0.0284 (13)0.0277 (13)0.0014 (11)0.0184 (11)0.0007 (10)
C50.0344 (14)0.0268 (13)0.0376 (15)0.0031 (11)0.0224 (13)0.0007 (11)
C60.0321 (14)0.0263 (13)0.0328 (14)0.0008 (11)0.0169 (12)0.0026 (11)
C70.0374 (15)0.0301 (13)0.0264 (14)0.0017 (11)0.0182 (12)0.0015 (11)
C80.0355 (14)0.0277 (14)0.0315 (14)0.0009 (11)0.0221 (12)0.0001 (10)
C90.0315 (13)0.0314 (13)0.0287 (14)0.0056 (11)0.0169 (11)0.0045 (11)
C100.0428 (17)0.0446 (17)0.0368 (16)0.0118 (14)0.0179 (14)0.0093 (13)
C110.0491 (17)0.0350 (15)0.0331 (15)0.0073 (13)0.0287 (14)0.0060 (12)
C120.0446 (16)0.0406 (16)0.0371 (16)0.0016 (13)0.0294 (14)0.0000 (12)
C130.0504 (17)0.0342 (15)0.0360 (15)0.0020 (12)0.0312 (14)0.0049 (12)
Geometric parameters (Å, º) top
Cu1—N11.980 (2)C1—H10.9300
Cu1—N1i1.980 (2)C2—H20.9300
Cu1—N4ii2.011 (2)C3—H30.9300
Cu1—N4iii2.011 (2)C4—C51.381 (4)
N1—C31.313 (3)C4—C91.383 (4)
N1—C11.360 (4)C5—C61.395 (4)
N2—C31.345 (3)C5—H50.9300
N2—C21.375 (3)C6—C71.388 (4)
N2—C41.430 (3)C6—C101.506 (4)
N3—C111.346 (3)C7—C81.380 (4)
N3—C131.371 (3)C7—H70.9300
N3—C81.434 (3)C8—C91.376 (4)
N4—C111.316 (3)C9—H90.9300
N4—C121.374 (3)C10—H10A0.9600
N4—Cu1iv2.011 (2)C10—H10B0.9600
N5—O31.217 (4)C10—H10C0.9600
N5—O21.244 (3)C11—H110.9300
N5—O11.246 (4)C12—C131.346 (4)
O1W—H1WA0.877 (19)C12—H120.9300
O1W—H1WB0.86 (2)C13—H130.9300
C1—C21.344 (4)
N1—Cu1—N1i180.0C5—C4—N2120.8 (2)
N1—Cu1—N4ii90.60 (9)C9—C4—N2118.7 (2)
N1i—Cu1—N4ii89.40 (9)C4—C5—C6120.3 (2)
N1—Cu1—N4iii89.40 (9)C4—C5—H5119.8
N1i—Cu1—N4iii90.60 (9)C6—C5—H5119.8
N4ii—Cu1—N4iii180.0C7—C6—C5119.3 (2)
C3—N1—C1106.1 (2)C7—C6—C10120.2 (2)
C3—N1—Cu1124.95 (19)C5—C6—C10120.5 (2)
C1—N1—Cu1128.98 (18)C8—C7—C6119.3 (2)
C3—N2—C2106.5 (2)C8—C7—H7120.3
C3—N2—C4125.0 (2)C6—C7—H7120.3
C2—N2—C4128.5 (2)C9—C8—C7121.8 (2)
C11—N3—C13107.0 (2)C9—C8—N3117.8 (2)
C11—N3—C8124.6 (2)C7—C8—N3120.3 (2)
C13—N3—C8128.3 (2)C8—C9—C4118.8 (2)
C11—N4—C12105.7 (2)C8—C9—H9120.6
C11—N4—Cu1iv123.13 (18)C4—C9—H9120.6
C12—N4—Cu1iv131.13 (18)C6—C10—H10A109.5
O3—N5—O2119.9 (3)C6—C10—H10B109.5
O3—N5—O1119.7 (3)H10A—C10—H10B109.5
O2—N5—O1120.3 (3)C6—C10—H10C109.5
H1WA—O1W—H1WB92 (4)H10A—C10—H10C109.5
C2—C1—N1109.8 (2)H10B—C10—H10C109.5
C2—C1—H1125.1N4—C11—N3111.2 (2)
N1—C1—H1125.1N4—C11—H11124.4
C1—C2—N2106.4 (2)N3—C11—H11124.4
C1—C2—H2126.8C13—C12—N4109.8 (2)
N2—C2—H2126.8C13—C12—H12125.1
N1—C3—N2111.3 (2)N4—C12—H12125.1
N1—C3—H3124.4C12—C13—N3106.3 (2)
N2—C3—H3124.4C12—C13—H13126.8
C5—C4—C9120.5 (2)N3—C13—H13126.8
N1i—Cu1—N1—C312 (3)C4—C5—C6—C10179.6 (2)
N4ii—Cu1—N1—C366.7 (2)C5—C6—C7—C80.7 (4)
N4iii—Cu1—N1—C3113.3 (2)C10—C6—C7—C8179.9 (3)
N1i—Cu1—N1—C1170 (3)C6—C7—C8—C90.3 (4)
N4ii—Cu1—N1—C1111.9 (3)C6—C7—C8—N3179.6 (2)
N4iii—Cu1—N1—C168.1 (3)C11—N3—C8—C944.8 (4)
C3—N1—C1—C20.0 (3)C13—N3—C8—C9132.7 (3)
Cu1—N1—C1—C2178.8 (2)C11—N3—C8—C7134.5 (3)
N1—C1—C2—N20.0 (4)C13—N3—C8—C748.0 (4)
C3—N2—C2—C10.1 (3)C7—C8—C9—C40.6 (4)
C4—N2—C2—C1178.3 (3)N3—C8—C9—C4178.7 (2)
C1—N1—C3—N20.1 (3)C5—C4—C9—C81.1 (4)
Cu1—N1—C3—N2178.82 (17)N2—C4—C9—C8178.6 (2)
C2—N2—C3—N10.1 (3)C12—N4—C11—N30.0 (3)
C4—N2—C3—N1178.4 (2)Cu1iv—N4—C11—N3177.32 (17)
C3—N2—C4—C5176.8 (2)C13—N3—C11—N40.2 (3)
C2—N2—C4—C55.1 (4)C8—N3—C11—N4177.7 (2)
C3—N2—C4—C93.5 (4)C11—N4—C12—C130.2 (3)
C2—N2—C4—C9174.6 (3)Cu1iv—N4—C12—C13176.8 (2)
C9—C4—C5—C60.7 (4)N4—C12—C13—N30.3 (3)
N2—C4—C5—C6179.0 (2)C11—N3—C13—C120.3 (3)
C4—C5—C6—C70.2 (4)C8—N3—C13—C12177.5 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+5/2, z1/2; (iii) x, y1/2, z+3/2; (iv) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.88 (2)2.04 (2)2.909 (6)170 (4)
O1W—H1WB···O3v0.86 (2)2.20 (3)3.020 (5)159 (5)
O1W—H1WB···O2v0.86 (2)2.42 (4)3.142 (4)142 (5)
C2—H2···O1Wvi0.932.363.230 (5)156
C3—H3···O1i0.932.273.186 (4)167
Symmetry codes: (i) x, y+2, z+1; (v) x+1, y+2, z+1; (vi) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C13H12N4)2]·2H2O
Mr672.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.585 (4), 9.652 (3), 15.450 (4)
β (°) 123.604 (17)
V3)1438.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.839, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
10260, 2672, 2114
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.06
No. of reflections2672
No. of parameters214
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.51

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.88 (2)2.04 (2)2.909 (6)170 (4)
O1W—H1WB···O3i0.86 (2)2.20 (3)3.020 (5)159 (5)
O1W—H1WB···O2i0.86 (2)2.42 (4)3.142 (4)142 (5)
C2—H2···O1Wii0.932.363.230 (5)156
C3—H3···O1iii0.932.273.186 (4)167
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+2, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (No. KJ2012A204).

References

First citationAltman, R. A. & Buchwald, S. L. (2006). Org. Lett. 8, 2779–2782.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 1557–1559.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, C. M., Wu, L. Y., Lu, H. & Xu, Y. (2008). Cryst. Growth Des. 8, 215–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L., Hu, T. L., Li, J. R., Wang, D. Z., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 412–420.  Web of Science CSD CrossRef CAS Google Scholar
First citationQi, Y., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 3602–3608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y. Q., Zhao, Y. M., Chen, Z. X., Zhang, G. N., Weng, L. H. & Zhao, D. Y. (2007). Chem. Eur. J. 13, 4146–4154.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, B., Côté, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Nature (London), 453, 207–211.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, S., Lan, J., Mao, Z., Xie, R. & You, J. (2008). Cryst. Growth Des. 8, 3134–3136.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds