metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-(2-azaniumylethyl)piperazin-1-ium] di-µ-sulfido-bis[disulfidogermanate(II)]

Bei-Bei Zhang,^a Chao Xu,^a Taike Duan,^a Qun Chen^b and Qian-Feng Zhang^{a,b}*

^aInstitute of Molecular Engineering and Applied Chemsitry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and ^bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China Correspondence e-mail: zhangqf@ahut.edu.cn

Received 5 May 2012; accepted 15 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.017; wR factor = 0.044; data-to-parameter ratio = 23.4.

In the title compound, $(C_6H_{17}N_3)_2[Ge_2S_6]$, the dimeric $[Ge_2S_6]^{4-}$ anion is formed by two edge-sharing GeS₄ tetrahedral units. The average terminal and bridging Ge-S bond lengths are 2.164 (2) and 2.272 (8) Å, respectively. The dimeric inorganic anions and the organic piperazinium cations are organized into a three-dimensional network by N-H···S hydrogen bonds.

Related literature

For background to main-group metal-chalcogenide compounds, see: Bedard *et al.* (1989); Yaghi *et al.* (1994); Bowes & Ozin (1996); Zheng *et al.* (2005); Zhang *et al.* (2008); Haddadpour *et al.* (2009). For related structures, see: Jia *et al.* (2005); Xu *et al.* (2012).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C_6H_{17}N_3})_2[{\rm Ge}_2{\rm S_6}] \\ M_r = 600.10 \\ {\rm Triclinic,} \ P\overline{1} \\ a = 7.4985 \ (1) \ {\rm \mathring{A}} \\ b = 8.2709 \ (1) \ {\rm \mathring{A}} \\ c = 10.4177 \ (1) \ {\rm \mathring{A}} \\ \alpha = 72.156 \ (1)^\circ \\ \beta = 78.323 \ (1)^\circ \end{array}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{min} = 0.568, T_{max} = 0.694$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.017$	118 parameters
$wR(F^2) = 0.044$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
2756 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

11264 measured reflections

 $R_{\rm int} = 0.018$

2756 independent reflections

2558 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdot \cdot \cdot S2^{i}$	0.90	2.50	3.3864 (14)	170
$N1 - H1A \cdot \cdot \cdot S2^{ii}$	0.90	2.49	3.2990 (14)	150
$N2-H2A\cdots S3$	0.89	2.43	3.2781 (13)	160
$N2-H2C \cdot \cdot \cdot S2^{iii}$	0.89	2.51	3.3467 (13)	157
$N2-H2B\cdots S3^{iv}$	0.89	2.42	3.3021 (13)	172

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z - 1; (iii) -x + 1, -y, -z + 1; (iv) -x + 2, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2068).

References

- Bedard, R. L., Wilson, S. T., Vail, L. D., Bennettand, J. M. & Flanigen, E. M. (1989). Zeolites Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, edited by P. A. Jacobs & R. A. van Santen, p. 375. Amsterdam: Elsevier.
- Bowes, C. L. & Ozin, G. A. (1996). Adv. Mater. 8, 13-18.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Haddadpour, S., Melullis, M., Staesche, H., Mariappan, C. R., Roling, B., Clerac, R. & Dehnen, S. (2009). *Inorg. Chem.* 48, 1689–1695.
- Jia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874–881.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, C., Zhang, J.-J., Duan, T., Chen, Q. & Zhang, Q.-F. (2012). Acta Cryst. E68, m154.
- Yaghi, O. M., Sun, Z., Richardson, D. A. & Groy, T. L. (1994). J. Am. Chem. Soc. 116, 807–808.
- Zhang, Z., Zhang, J., Wu, T., Bu, X. & Feng, P. (2008). J. Am. Chem. Soc. 130, 15238–15239.
- Zheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805-2806.

supporting information

Acta Cryst. (2012). E68, m822 [doi:10.1107/S1600536812022040]

Bis[4-(2-azaniumylethyl)piperazin-1-ium] di-μ-sulfido-bis[disulfidogermanate(II)]

Bei-Bei Zhang, Chao Xu, Taike Duan, Qun Chen and Qian-Feng Zhang

S1. Comment

Main group (groups 13 and 14) metal chalcogenide complexes with well-defined compositions and structures are of great interest because of their size-dependent optical properties, semiconducting and photocatalytic behaviors (Bowes & Ozin, 1996; Zhang *et al.*, 2008). Since Bedard synthesized the first porous chalcogenide compound by replacing O^{2-} with S^{2-} in an open-framework oxide (Bedard *et al.*, 1989), much effort has been expended during the past two decades to develop open-framework metal chalcogenides (Yaghi *et al.*, 1994; Zheng *et al.*, 2005; Haddadpour *et al.*, 2009). In this paper we report the hydrothermal synthesis and crystal structure of a new thiogermanate, $[aepH_2]_2[Ge_2S_6]$. (aep = N-(2-amino-ethyl)piperazinium).

The title compound consists of a dimeric $[Ge_2S_6]^4$ anion having crystallographically-imposed centrosymmetry and two diprotonated $[aepH_2]^{2+}$ cations (Fig. 1). The dimeric $[Ge_2S_6]^4$ anion is constructed by two edge-linked tetrahedral GeS₄ units forming a planar Ge₂S₂ quadrilateral while the four terminal sulfur atoms lie in a second plane at an angle of 88.38 (1)° to the first. The S—Ge—S angles in the tetrahedral GeS₄ unit range from 91.827 (13) to 114.634 (15)°. The average Ge—S_t (terminal bond) length of 2.1642 (4) Å) is significantly shorter than the average Ge—S_b (bridging bond) length of 2.2724 (4) Å) with both values similar to those found in the other thiogermanates (Xu *et al.*, 2012; Jia *et al.*, 2005). The two terminal amine groups of the *N*-(2-aminoethyl)piperazine are protonated to balance the negative charge of the dimeric anion. The [Ge₂S₆]⁴⁻ anions and [apeH₂]²⁺ cations are organized into an extended three-dimensional network by N—H···S hydrogen bonds (Fig. 2 and Table 1).

S2. Experimental

GeO₂ (104.6 mg, 1.0 mmol) and S powder (128.0 mg, 4.0 mmol) were mixed with *N*-(2-aminoethyl)piperazine (2.3478 g) in a 23 mL Teflon-lined stainless steel autoclave and stirred for 20 min. The vessel was sealed and heated at 190°C for 7 d and then cooled to room temperature. Colorless slab crystals were obtained and air dried. The yield based on GeO₂ is about 36%. Analysis, calculated for $C_{12}H_{34}N_6S_6Ge_2$: C 24.0, H 5.71, N 14.0%; found C 23.7, H 5.56, N 13.9%.

S3. Refinement

The structure was solved by direct methods and refined by full-matrix least-squares methods based on F². All C-bound H atoms were positioned and refined as riding atoms with C—H = $0.97(CH_2)$ Å and $U_{iso}(H) = 1.2U_{eq}(C)$. N-bound H atoms were located in a difference map, adjusted to give N—H = 0.90 Å and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

Perspective view of the title compound with displacement ellipsoids at the 50% probability level.

Figure 2

Packing diagram of the title compound. Dashed lines denote hydrogen bonds.

Bis[4-(2-azaniumylethyl)piperazin-1-ium] di-µ-sulfido-bis[disulfidogermanate(II)]

Crystal data	
$(C_6H_{17}N_3)_2[Ge_2S_6]$	Z = 1
$M_r = 600.10$	F(000) = 308
Iriclinic, PI	$D_{\rm x} = 1.65 /{\rm Mg}{\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 7.4985(1) Å	Cell parameters from 6350 reflections
b = 8.2709 (1) Å	$\theta = 2.5 - 26.4^{\circ}$
c = 10.4177 (1) Å	$\mu = 3.03 \text{ mm}^{-1}$
$\alpha = 72.156(1)^{\circ}$	T = 296 K
$\beta = 78.323 (1)^{\circ}$	Slab, colorless
$y = 89.792 (1)^{\circ}$	$0.21 \times 0.16 \times 0.13 \text{ mm}$
V = 601.11 (1) Å ³	
Data collection	
Bruker APEXII CCD area-detector	11264 measured reflections
diffractometer	2756 independent reflections
Radiation source: fine-focus sealed tube	2558 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.018$
φ and φ scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADARS: Sheldrick 1997)	$k = -10 \rightarrow 10$
T = 0.568 T = 0.604	l = -12 12
$I_{\rm min} = 0.308, I_{\rm max} = 0.094$	$l = 13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.017$	Hydrogen site location: inferred from
$wR(F^2) = 0.044$	neighbouring sites
S = 1.04	H-atom parameters constrained
2756 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0255P)^2 + 0.0568P]$
118 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.34 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min} = -0.20 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Gel	0.534452 (18)	-0.015013 (17)	0.647883 (13)	0.02329 (5)	
S 1	0.39310 (5)	0.17306 (4)	0.49657 (4)	0.03133 (9)	
S2	0.34914 (5)	-0.14470 (5)	0.84118 (4)	0.03350 (9)	
S3	0.77604 (5)	0.09503 (5)	0.68057 (4)	0.03090 (9)	
N1	0.6536 (2)	0.80969 (18)	0.03620 (14)	0.0430 (3)	
H1A	0.6097	0.8421	-0.0415	0.052*	
H1B	0.6380	0.8934	0.0751	0.052*	
N2	0.94141 (17)	0.20541 (15)	0.34735 (13)	0.0330 (3)	
H2A	0.8730	0.1634	0.4320	0.049*	
H2B	1.0236	0.1318	0.3323	0.049*	
H2C	0.8707	0.2230	0.2859	0.049*	
N3	0.82332 (17)	0.56300 (15)	0.22444 (12)	0.0310 (3)	
C3	0.5509(2)	0.6512 (2)	0.1331 (2)	0.0471 (4)	
H3A	0.5581	0.5636	0.0884	0.057*	
H3B	0.4234	0.6728	0.1586	0.057*	
C4	0.6293 (2)	0.5917 (2)	0.25953 (17)	0.0404 (4)	
H4A	0.6139	0.6763	0.3074	0.048*	
H4B	0.5638	0.4867	0.3212	0.048*	
C5	0.9224 (2)	0.7215 (2)	0.13193 (18)	0.0462 (4)	
H5A	1.0512	0.7030	0.1096	0.055*	
H5B	0.9088	0.8079	0.1780	0.055*	
C6	0.8514 (3)	0.7828 (3)	0.00124 (18)	0.0513 (5)	
H6A	0.9172	0.8886	-0.0584	0.062*	
H6B	0.8699	0.6992	-0.0475	0.062*	
C7	0.9006 (3)	0.5008 (2)	0.34801 (17)	0.0416 (4)	

supporting information

H7A	0.8031	0.4515	0.4279	0.050*
H7B	0.9606	0.5955	0.3625	0.050*
C8	1.0363 (2)	0.3689 (2)	0.33375 (18)	0.0384 (3)
H8A	1.1192	0.4095	0.2445	0.046*
H8B	1.1075	0.3511	0.4044	0.046*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ge1	0.02519 (8)	0.02634 (8)	0.02008 (8)	0.00381 (5)	-0.00971 (5)	-0.00663 (6)
S1	0.0419 (2)	0.03052 (18)	0.02880 (19)	0.01500 (14)	-0.01897 (15)	-0.01251 (14)
S2	0.03277 (19)	0.0426 (2)	0.02247 (17)	-0.00458 (15)	-0.00702 (14)	-0.00547 (15)
S3	0.02968 (18)	0.03499 (19)	0.03217 (19)	0.00113 (14)	-0.01403 (14)	-0.01165 (15)
N1	0.0604 (9)	0.0426 (8)	0.0369 (7)	0.0181 (6)	-0.0304 (7)	-0.0153 (6)
N2	0.0350 (6)	0.0325 (6)	0.0308 (6)	0.0071 (5)	-0.0105 (5)	-0.0066 (5)
N3	0.0387 (7)	0.0290 (6)	0.0265 (6)	0.0061 (5)	-0.0144 (5)	-0.0056 (5)
C3	0.0397 (9)	0.0499 (10)	0.0598 (11)	0.0059 (7)	-0.0220 (8)	-0.0214 (9)
C4	0.0414 (9)	0.0377 (8)	0.0375 (9)	0.0026 (7)	-0.0057 (7)	-0.0067 (7)
C5	0.0395 (9)	0.0485 (10)	0.0411 (9)	-0.0035 (7)	-0.0160 (7)	0.0046 (8)
C6	0.0546 (11)	0.0568 (11)	0.0310 (9)	0.0061 (9)	-0.0104 (8)	0.0037 (8)
C7	0.0641 (11)	0.0337 (8)	0.0330 (8)	0.0120 (7)	-0.0255 (8)	-0.0097 (7)
C8	0.0391 (8)	0.0371 (8)	0.0404 (9)	0.0034 (6)	-0.0211 (7)	-0.0062 (7)

Geometric parameters (Å, °)

Ge1—S3	2.1628 (4)	C3—C4	1.495 (2)
Ge1—S2	2.1658 (4)	С3—НЗА	0.9700
Ge1—S1 ⁱ	2.2668 (4)	C3—H3B	0.9700
Ge1—S1	2.2780 (4)	C4—H4A	0.9700
S1—Ge1 ⁱ	2.2668 (4)	C4—H4B	0.9700
N1—C6	1.487 (2)	C5—C6	1.504 (2)
N1—C3	1.487 (2)	С5—Н5А	0.9700
N1—H1A	0.9000	C5—H5B	0.9700
N1—H1B	0.9000	C6—H6A	0.9700
N2—C8	1.4845 (19)	C6—H6B	0.9700
N2—H2A	0.8900	C7—C8	1.509 (2)
N2—H2B	0.8900	C7—H7A	0.9700
N2—H2C	0.8900	C7—H7B	0.9700
N3—C4	1.464 (2)	C8—H8A	0.9700
N3—C5	1.4637 (19)	C8—H8B	0.9700
N3—C7	1.467 (2)		
\$3—Ge1—\$2	111.635 (15)	N3—C4—H4A	109.4
$S3-Ge1-S1^{i}$	111.482 (15)	C3—C4—H4A	109.4
$S2-Ge1-S1^{i}$	114.630 (15)	N3—C4—H4B	109.4
S3—Ge1—S1	113.476 (15)	C3—C4—H4B	109.4
S2—Ge1—S1	112.453 (16)	H4A—C4—H4B	108.0
S1 ⁱ —Ge1—S1	91.835 (13)	N3—C5—C6	110.83 (14)

Gel ⁱ —S1—Gel	88.165 (13)	N3—C5—H5A	109.5
C6—N1—C3	110.87 (13)	С6—С5—Н5А	109.5
C6—N1—H1A	109.4	N3—C5—H5B	109.5
C3—N1—H1A	109.5	С6—С5—Н5В	109.5
C6—N1—H1B	109.5	H5A—C5—H5B	108.1
C3—N1—H1B	109.4	N1—C6—C5	109.21 (15)
H1A—N1—H1B	108.1	N1—C6—H6A	109.8
C8—N2—H2A	109.5	С5—С6—Н6А	109.8
C8—N2—H2B	109.5	N1—C6—H6B	109.8
H2A—N2—H2B	109.5	С5—С6—Н6В	109.8
C8—N2—H2C	109.5	H6A—C6—H6B	108.3
H2A—N2—H2C	109.5	N3—C7—C8	111.07 (13)
H2B—N2—H2C	109.5	N3—C7—H7A	109.4
C4—N3—C5	109.42 (13)	С8—С7—Н7А	109.4
C4—N3—C7	111.63 (13)	N3—C7—H7B	109.4
C5—N3—C7	109.98 (13)	С8—С7—Н7В	109.4
N1—C3—C4	109.82 (13)	H7A—C7—H7B	108.0
N1—C3—H3A	109.7	N2—C8—C7	110.74 (13)
С4—С3—НЗА	109.7	N2—C8—H8A	109.5
N1—C3—H3B	109.7	С7—С8—Н8А	109.5
C4—C3—H3B	109.7	N2—C8—H8B	109.5
НЗА—СЗ—НЗВ	108.2	С7—С8—Н8В	109.5
N3—C4—C3	111.20 (13)	H8A—C8—H8B	108.1

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H··· A
N1—H1B···S2 ⁱⁱ	0.90	2.50	3.3864 (14)	170
N1—H1A····S2 ⁱⁱⁱ	0.90	2.49	3.2990 (14)	150
N2—H2A····S3	0.89	2.43	3.2781 (13)	160
N2—H2 C ···S2 ⁱ	0.89	2.51	3.3467 (13)	157
N2—H2 B ····S3 ^{iv}	0.89	2.42	3.3021 (13)	172

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*-1; (iv) -*x*+2, -*y*, -*z*+1.