organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1848-o1849

1-{(E)-[3-(1H-Imidazol-1-yl)-1-phenyl­propyl­­idene]amino}-3-(2-methyl­phen­yl)urea

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bMedicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 May 2012; accepted 18 May 2012; online 23 May 2012)

In the title compound, C20H21N5O, the conformation about the imine bond [1.289 (3) Å] is E. Overall, the mol­ecule is disk-shaped with the imidazole ring located above the remainder of the mol­ecule and with the dihedral angles of 10.97 (15) and 12.11 (15)°, respectively, between the imidazole ring and the phenyl and methyl­benzene rings; the dihedral angle between the aromatic rings is 8.17 (14)°. Within the urea unit, the N—H atoms are anti to each other and one of the N—H atoms forms an intra­molecular N—H⋯N hydrogen bond. Helical supra­molecular chains along [001] are formed via N—H⋯N(imidazole) hydrogen bonds in the crystal structure. These are connected into a three-dimensional architecture by C—H⋯O(carbon­yl) and C—H⋯π inter­actions.

Related literature

For background to epilepsy and epilepsy drugs see: Sander & Shorvon (1987[Sander, J. W. & Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829-839.]); Saxena & Saxena (1995[Saxena, A. K. & Saxena, M. (1995). Prog. Drug Res. 44, 185-291.]); Edafiogho & Scott (1996[Edafiogho, I. O. & Scott, K. R. (1996). Burgers Medicinal Chemistry and Drug Discovery, editied by M. E. Wolf, p. 175. New York: John Wiley & Sons.]). For the use of aryl semicarbazones as anti-convulsants see: Aboul-Enein et al. (2012[Aboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. & El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360-369.]); Dimmock et al. (1993[Dimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Duffy, M. S., Reid, R. S., Quail, J. W., Pugazhenthi, U., Ong, A., Bikker, J. A. & Weaver, D. F. (1993). J. Med. Chem. 36, 2243-2252.], 1995[Dimmock, J. R., Sidhu, K. K., Tumber, S. D., Basran, S. K., Chen, M., Quail, J. W., Yang, J., Rozas, I. & Weaver, D. F. (1995). J. Med. Chem. 30, 287-301.]). For a related structure see: Attia et al. (2012[Attia, M. I., Aboul-Enein, M. N., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1799-o1800.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N5O

  • Mr = 347.42

  • Orthorhombic, P n a 21

  • a = 20.5220 (17) Å

  • b = 14.1916 (11) Å

  • c = 6.0060 (4) Å

  • V = 1749.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.08 × 0.04 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.805, Tmax = 1.000

  • 8422 measured reflections

  • 2211 independent reflections

  • 1809 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.097

  • S = 1.02

  • 2211 reflections

  • 244 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10–C15 and N4,N5,C18–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3 0.88 (1) 2.12 (3) 2.601 (3) 114 (2)
N2—H2n⋯N5i 0.89 (1) 2.03 (1) 2.884 (3) 161 (3)
C5—H5⋯O1ii 0.95 2.49 3.416 (3) 164
C7—H7BCg1iii 0.98 2.82 3.686 (3) 148
C12—H12⋯Cg1iv 0.95 2.72 3.464 (3) 135
C20—H20⋯Cg2i 0.95 2.85 3.604 (3) 137
Symmetry codes: (i) [-x, -y+2, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (2E)-2-[3-(1H-imidazol-1-yl)-1-phenylpropylidene]-N-(2-methylphenyl)hydrazinecarboxamide (I) will be evaluated as anti-convulsant in experimental animal models for which structural information is desirable. The motivation for its study is the observation that aryl semicarbazones can exhibit significant anti-convulsant activities (Aboul-Enein et al., 2012; Dimmock et al., 1995; Dimmock et al., 1993). Epilepsy is one of the most widespread pathologies of human brain, affecting approximately 1% of world population (Sander & Shorvon, 1987). The need for new drugs arises as currently used anti-epileptic drugs suffer from a number of disadvantages including the fact that approximately one quarter of epileptic patients have seizures that are resistant to the available medical therapies (Saxena & Saxena, 1995). Aside from that, many anti-epileptics used clinically cause significant side-effects (Edafiogho & Scott, 1996).

In (I), Fig. 1, the conformation about the N3C9 bond [1.289 (3) Å] is E. The dihedral angles between the imidazolyl ring and the phenyl and methylbenzene rings are 10.97 (15) and 12.11 (15)°, respectively; the dihedral angle between the phenyl and benzene rings is 8.17 (14)°. Overall, the main part of the molecule, excepting the imidazolyl substituent, appears flat and is significantly flatter than the recently determined 4-methoxybenzene analogue (Attia et al., 2012). Within the urea moiety, the N—H atoms are anti to each other and the N1—H atom forms an intramolecular N—H···N hydrogen bond which defines a S(5) loop, Table 1.

In the crystal structure, helical supramolecular chains along [001] are formed via N—H···N(imidazolyl) hydrogen bonds, Fig. 2 and Table 1. These are connected into a three-dimensional architecture by CH···O(carbonyl) and C—H···π interactions, Fig. 3 and Table 1.

Related literature top

For background to epilepsy and epilepsy drugs see: Sander & Shorvon (1987); Saxena & Saxena (1995); Edafiogho & Scott (1996). For the use of aryl semicarbazones as anti-convulsants see: Aboul-Enein et al. (2012); Dimmock et al. (1993, 1995). For a related structure see: Attia et al. (2012).

Experimental top

Acetic acid (2 drops) was added to a stirred solution of 3-(1H-imidazol-1-yl)-1-phenyl-propan-1-one (0.20 g, 1 mmol) and N-(2-methylphenyl)hydrazinecarboxamide (0.17 g, 1 mmol) in absolute ethanol (10 mL). The reaction mixture was stirred at room temperature for 18 h. The solution was concentrated under vacuum and the precipitated solid was filtered off. The collected solid was recrystallized from ethanol to give crystals of the title compound; M.P.: 453–455 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were refined with N—H = 0.88±0.01 Å. In the absence of significant anomalous scattering effects, 1613 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain along [001] in (I) mediated by N—H···N hydrogen bonding, shown as blue dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents for (I). The N—H···N, C—H···O and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.
1-{(E)-[3-(1H-Imidazol-1-yl)-1-phenylpropylidene]amino}-3-(2- methylphenyl)urea top
Crystal data top
C20H21N5OF(000) = 736
Mr = 347.42Dx = 1.319 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2304 reflections
a = 20.5220 (17) Åθ = 2.5–27.5°
b = 14.1916 (11) ŵ = 0.09 mm1
c = 6.0060 (4) ÅT = 100 K
V = 1749.2 (2) Å3Prism, colourless
Z = 40.40 × 0.08 × 0.04 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2211 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1809 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scanh = 2625
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1814
Tmin = 0.805, Tmax = 1.000l = 77
8422 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.4249P]
where P = (Fo2 + 2Fc2)/3
2211 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.19 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H21N5OV = 1749.2 (2) Å3
Mr = 347.42Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.5220 (17) ŵ = 0.09 mm1
b = 14.1916 (11) ÅT = 100 K
c = 6.0060 (4) Å0.40 × 0.08 × 0.04 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2211 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1809 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 1.000Rint = 0.057
8422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
2211 reflectionsΔρmin = 0.25 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16812 (10)0.91634 (13)1.0006 (3)0.0235 (5)
N10.19630 (12)0.75898 (15)1.0029 (4)0.0190 (5)
H1n0.1888 (15)0.7078 (14)0.925 (5)0.029 (9)*
N20.12686 (12)0.81951 (15)0.7377 (4)0.0198 (5)
H2n0.1117 (13)0.8684 (14)0.662 (4)0.016 (8)*
N30.12298 (12)0.72925 (16)0.6568 (4)0.0180 (5)
N40.04027 (11)0.86786 (16)0.2322 (4)0.0196 (5)
N50.08081 (12)0.99922 (16)0.0881 (4)0.0213 (5)
C10.23540 (14)0.7509 (2)1.1950 (4)0.0179 (6)
C20.24925 (15)0.8274 (2)1.3333 (5)0.0214 (6)
H20.23350.88841.29630.026*
C30.28578 (14)0.8145 (2)1.5240 (5)0.0241 (7)
H30.29450.86661.61880.029*
C40.30981 (16)0.7261 (2)1.5779 (5)0.0241 (7)
H40.33500.71741.70900.029*
C50.29672 (14)0.65011 (19)1.4380 (5)0.0218 (6)
H50.31320.58961.47530.026*
C60.26012 (13)0.66097 (19)1.2451 (5)0.0185 (6)
C70.24667 (14)0.57690 (18)1.0977 (5)0.0209 (6)
H7A0.26130.59050.94580.031*
H7B0.19980.56381.09670.031*
H7C0.27020.52191.15500.031*
C80.16516 (13)0.83647 (19)0.9221 (4)0.0186 (6)
C90.09415 (13)0.71323 (19)0.4699 (5)0.0177 (6)
C100.09067 (13)0.61251 (19)0.4007 (5)0.0171 (6)
C110.06162 (14)0.58577 (19)0.1998 (5)0.0196 (6)
H110.04470.63280.10330.023*
C120.05714 (14)0.4915 (2)0.1391 (5)0.0230 (7)
H120.03680.47460.00260.028*
C130.08204 (15)0.4225 (2)0.2759 (5)0.0242 (7)
H130.07870.35810.23440.029*
C140.11191 (14)0.4473 (2)0.4744 (5)0.0251 (7)
H140.12930.39980.56870.030*
C150.11650 (15)0.54123 (19)0.5355 (5)0.0226 (6)
H150.13750.55750.67110.027*
C160.06317 (14)0.78834 (19)0.3273 (4)0.0181 (6)
H16A0.06630.76980.16880.022*
H16B0.08720.84820.34650.022*
C170.00841 (14)0.80344 (19)0.3886 (5)0.0217 (6)
H17A0.03140.74210.38740.026*
H17B0.01130.82970.54100.026*
C180.06042 (14)0.8465 (2)0.0194 (5)0.0220 (6)
H180.05750.78710.05290.026*
C190.08538 (14)0.92777 (19)0.0665 (5)0.0220 (6)
H190.10330.93420.21160.026*
C200.05398 (14)0.96020 (19)0.2651 (5)0.0206 (6)
H200.04530.99300.39980.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (11)0.0115 (9)0.0270 (11)0.0001 (9)0.0050 (10)0.0016 (8)
N10.0223 (13)0.0119 (11)0.0227 (12)0.0029 (10)0.0052 (11)0.0031 (10)
N20.0275 (13)0.0124 (11)0.0196 (12)0.0038 (10)0.0040 (11)0.0005 (10)
N30.0197 (12)0.0143 (12)0.0200 (12)0.0002 (10)0.0003 (10)0.0008 (8)
N40.0201 (12)0.0165 (12)0.0222 (12)0.0026 (10)0.0004 (11)0.0012 (10)
N50.0230 (13)0.0174 (12)0.0235 (12)0.0022 (11)0.0003 (12)0.0003 (10)
C10.0150 (13)0.0194 (15)0.0192 (14)0.0002 (11)0.0023 (12)0.0009 (11)
C20.0225 (15)0.0148 (13)0.0268 (15)0.0033 (12)0.0011 (12)0.0001 (12)
C30.0253 (15)0.0199 (15)0.0272 (16)0.0016 (13)0.0037 (14)0.0054 (12)
C40.0267 (16)0.0246 (15)0.0210 (14)0.0014 (13)0.0065 (13)0.0010 (12)
C50.0213 (14)0.0156 (14)0.0284 (16)0.0030 (12)0.0008 (14)0.0039 (12)
C60.0180 (14)0.0150 (14)0.0226 (14)0.0004 (11)0.0032 (14)0.0004 (12)
C70.0199 (15)0.0162 (14)0.0265 (14)0.0023 (12)0.0038 (13)0.0009 (12)
C80.0184 (14)0.0172 (13)0.0202 (14)0.0022 (12)0.0040 (13)0.0019 (11)
C90.0164 (14)0.0160 (14)0.0206 (14)0.0003 (11)0.0006 (12)0.0015 (11)
C100.0145 (13)0.0170 (13)0.0199 (13)0.0003 (11)0.0017 (12)0.0007 (11)
C110.0198 (14)0.0169 (14)0.0221 (14)0.0016 (12)0.0005 (13)0.0017 (11)
C120.0189 (15)0.0250 (16)0.0252 (16)0.0017 (13)0.0026 (13)0.0048 (12)
C130.0244 (16)0.0173 (14)0.0309 (16)0.0004 (13)0.0013 (15)0.0048 (12)
C140.0265 (16)0.0205 (15)0.0283 (16)0.0046 (13)0.0004 (14)0.0013 (12)
C150.0248 (16)0.0195 (14)0.0235 (15)0.0007 (13)0.0029 (13)0.0021 (12)
C160.0223 (15)0.0138 (13)0.0181 (13)0.0023 (12)0.0034 (12)0.0020 (10)
C170.0231 (16)0.0185 (14)0.0234 (15)0.0061 (12)0.0013 (13)0.0060 (12)
C180.0262 (15)0.0197 (14)0.0200 (14)0.0020 (13)0.0024 (14)0.0048 (11)
C190.0216 (15)0.0224 (15)0.0220 (15)0.0001 (12)0.0021 (13)0.0012 (12)
C200.0216 (14)0.0178 (14)0.0223 (14)0.0022 (12)0.0007 (13)0.0032 (11)
Geometric parameters (Å, º) top
O1—C81.229 (3)C7—H7B0.9800
N1—C81.361 (3)C7—H7C0.9800
N1—C11.410 (4)C9—C101.490 (4)
N1—H1n0.879 (10)C9—C161.508 (4)
N2—N31.373 (3)C10—C111.398 (4)
N2—C81.379 (4)C10—C151.400 (4)
N2—H2n0.885 (10)C11—C121.390 (4)
N3—C91.289 (3)C11—H110.9500
N4—C201.355 (3)C12—C131.377 (4)
N4—C181.377 (4)C12—H120.9500
N4—C171.465 (3)C13—C141.386 (4)
N5—C201.319 (4)C13—H130.9500
N5—C191.378 (4)C14—C151.386 (4)
C1—C21.396 (4)C14—H140.9500
C1—C61.406 (4)C15—H150.9500
C2—C31.381 (4)C16—C171.530 (4)
C2—H20.9500C16—H16A0.9900
C3—C41.387 (4)C16—H16B0.9900
C3—H30.9500C17—H17A0.9900
C4—C51.393 (4)C17—H17B0.9900
C4—H40.9500C18—C191.363 (4)
C5—C61.389 (4)C18—H180.9500
C5—H50.9500C19—H190.9500
C6—C71.511 (4)C20—H200.9500
C7—H7A0.9800
C8—N1—C1128.6 (2)C10—C9—C16120.0 (2)
C8—N1—H1n113 (2)C11—C10—C15117.7 (2)
C1—N1—H1n118 (2)C11—C10—C9121.4 (2)
N3—N2—C8118.7 (2)C15—C10—C9120.9 (2)
N3—N2—H2n121.9 (19)C12—C11—C10121.1 (3)
C8—N2—H2n118.4 (19)C12—C11—H11119.5
C9—N3—N2120.0 (2)C10—C11—H11119.5
C20—N4—C18106.6 (2)C13—C12—C11120.2 (3)
C20—N4—C17127.1 (2)C13—C12—H12119.9
C18—N4—C17126.3 (2)C11—C12—H12119.9
C20—N5—C19105.2 (2)C12—C13—C14119.8 (3)
C2—C1—C6120.3 (3)C12—C13—H13120.1
C2—C1—N1122.7 (3)C14—C13—H13120.1
C6—C1—N1117.0 (2)C13—C14—C15120.1 (3)
C3—C2—C1120.1 (3)C13—C14—H14119.9
C3—C2—H2120.0C15—C14—H14119.9
C1—C2—H2120.0C14—C15—C10121.1 (3)
C2—C3—C4120.4 (3)C14—C15—H15119.5
C2—C3—H3119.8C10—C15—H15119.5
C4—C3—H3119.8C9—C16—C17111.6 (2)
C3—C4—C5119.4 (3)C9—C16—H16A109.3
C3—C4—H4120.3C17—C16—H16A109.3
C5—C4—H4120.3C9—C16—H16B109.3
C6—C5—C4121.4 (3)C17—C16—H16B109.3
C6—C5—H5119.3H16A—C16—H16B108.0
C4—C5—H5119.3N4—C17—C16111.2 (2)
C5—C6—C1118.3 (3)N4—C17—H17A109.4
C5—C6—C7120.0 (2)C16—C17—H17A109.4
C1—C6—C7121.7 (3)N4—C17—H17B109.4
C6—C7—H7A109.5C16—C17—H17B109.4
C6—C7—H7B109.5H17A—C17—H17B108.0
H7A—C7—H7B109.5C19—C18—N4106.1 (3)
C6—C7—H7C109.5C19—C18—H18126.9
H7A—C7—H7C109.5N4—C18—H18126.9
H7B—C7—H7C109.5C18—C19—N5110.0 (3)
O1—C8—N1125.8 (3)C18—C19—H19125.0
O1—C8—N2119.8 (2)N5—C19—H19125.0
N1—C8—N2114.4 (2)N5—C20—N4112.0 (3)
N3—C9—C10115.7 (2)N5—C20—H20124.0
N3—C9—C16124.3 (2)N4—C20—H20124.0
C8—N2—N3—C9171.6 (2)N3—C9—C10—C151.1 (4)
C8—N1—C1—C21.6 (5)C16—C9—C10—C15177.1 (3)
C8—N1—C1—C6177.8 (3)C15—C10—C11—C121.6 (4)
C6—C1—C2—C31.9 (4)C9—C10—C11—C12178.4 (3)
N1—C1—C2—C3177.5 (3)C10—C11—C12—C130.6 (4)
C1—C2—C3—C41.0 (5)C11—C12—C13—C140.3 (4)
C2—C3—C4—C50.1 (5)C12—C13—C14—C150.3 (4)
C3—C4—C5—C60.1 (5)C13—C14—C15—C100.7 (4)
C4—C5—C6—C11.0 (4)C11—C10—C15—C141.6 (4)
C4—C5—C6—C7179.8 (3)C9—C10—C15—C14178.4 (3)
C2—C1—C6—C51.9 (4)N3—C9—C16—C1790.0 (3)
N1—C1—C6—C5177.6 (3)C10—C9—C16—C1788.0 (3)
C2—C1—C6—C7179.3 (3)C20—N4—C17—C16101.8 (3)
N1—C1—C6—C71.2 (4)C18—N4—C17—C1676.1 (3)
C1—N1—C8—O13.3 (5)C9—C16—C17—N4173.0 (2)
C1—N1—C8—N2175.7 (3)C20—N4—C18—C190.1 (3)
N3—N2—C8—O1178.3 (2)C17—N4—C18—C19178.1 (3)
N3—N2—C8—N10.8 (4)N4—C18—C19—N50.3 (3)
N2—N3—C9—C10178.0 (2)C20—N5—C19—C180.7 (3)
N2—N3—C9—C160.0 (4)C19—N5—C20—N40.8 (3)
N3—C9—C10—C11179.0 (3)C18—N4—C20—N50.6 (3)
C16—C9—C10—C112.9 (4)C17—N4—C20—N5177.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10–C15 and N4,N5,C18–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N30.88 (1)2.12 (3)2.601 (3)114 (2)
N2—H2n···N5i0.89 (1)2.03 (1)2.884 (3)161 (3)
C5—H5···O1ii0.952.493.416 (3)164
C7—H7B···Cg1iii0.982.823.686 (3)148
C12—H12···Cg1iv0.952.723.464 (3)135
C20—H20···Cg2i0.952.853.604 (3)137
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC20H21N5O
Mr347.42
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)20.5220 (17), 14.1916 (11), 6.0060 (4)
V3)1749.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.08 × 0.04
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.805, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8422, 2211, 1809
Rint0.057
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.097, 1.02
No. of reflections2211
No. of parameters244
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10–C15 and N4,N5,C18–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N30.879 (10)2.12 (3)2.601 (3)114 (2)
N2—H2n···N5i0.885 (10)2.032 (14)2.884 (3)161 (3)
C5—H5···O1ii0.952.493.416 (3)164
C7—H7B···Cg1iii0.982.823.686 (3)148
C12—H12···Cg1iv0.952.723.464 (3)135
C20—H20···Cg2i0.952.853.604 (3)137
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z1/2.
 

Footnotes

Additional correspondence author, e-mail: mattia@ksu.edu.sa.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. & El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360–369.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAttia, M. I., Aboul-Enein, M. N., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1799–o1800.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Duffy, M. S., Reid, R. S., Quail, J. W., Pugazhenthi, U., Ong, A., Bikker, J. A. & Weaver, D. F. (1993). J. Med. Chem. 36, 2243–2252.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationDimmock, J. R., Sidhu, K. K., Tumber, S. D., Basran, S. K., Chen, M., Quail, J. W., Yang, J., Rozas, I. & Weaver, D. F. (1995). J. Med. Chem. 30, 287–301.  CrossRef CAS Google Scholar
First citationEdafiogho, I. O. & Scott, K. R. (1996). Burgers Medicinal Chemistry and Drug Discovery, editied by M. E. Wolf, p. 175. New York: John Wiley & Sons.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSander, J. W. & Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829–839.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSaxena, A. K. & Saxena, M. (1995). Prog. Drug Res. 44, 185–291.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1848-o1849
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds