organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-({4-[4-(1H-Benzimidazol-2-yl)phen­yl]-1H-1,2,3-triazol-1-yl}meth­­oxy)ethanol

aLaboratory of Bioorganic and Macromolecular Chemistry, Department of Chemistry, Faculty of Sciences and Technology Guéliz (FSTG), BP 549, Marrakech, Morocco, bLaboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakech, Morocco, and cInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de

(Received 16 May 2012; accepted 22 May 2012; online 26 May 2012)

In the title molecule, C18H17N5O2, the dihedral angle between the benzene plane and the benzimidazole plane is 19.8 (1)° and the angle between the benzene plane and the triazole plane is 16.7 (1)°. In the crystal, mol­ecules are connected by O—H⋯N hydrogen bonds, forming zigzag chains along the c-axis direction. The chains are connected by bifurcated N—H⋯(N,N) hydrogen bonds into layers parallel to (100). These layers are connected along the a-axis direction by weak C—H⋯O contacts, forming a three-dimensional network.

Related literature

For the bioactivity of benzimidazoles, see: Tebbe et al. (1997[Tebbe, M. J., Spitzer, W. A., Victor, F., Miller, S. C., Lee, C. C., Sattelberg Sr, T. R., McKinney, E. & Tang, J. C. (1997). J. Med. Chem. 40, 3937-3946.]); Andrzejewska et al. (2002[Andrzejewska, M., Yépez-Mulia, L., Cedillo-Rivera, R., Tapia, A., Vilpo, L., Vilpo, J. & Kazimierczuk, Z. (2002). Eur. J. Med. Chem. 37, 973-978.]); Navarrete-Vázquez et al. (2003[Navarrete-Vázquez, G., Yépez, L., Hernández-Campos, A., Tapia, A., Hernández-Luis, F., Cedillo, R., González, J., Martínez-Fernández, A., Martínez-Grueiro, M. & Castillo, R. (2003). Bioorg. Med. Chem. 11, 4615-4622.]); Terzioglu et al. (2004[Terzioglu, N., van Rijn, R. M., Bakker, R. A., De Esch, I. J. P. & Leurs, R. (2004). Bioorg. Med. Chem. Lett. 14, 5251-5256.]); Özden et al. (2005[Özden, S., Atabey, D., Yildiz, S. & Göker, H. (2005). Bioorg. Med. Chem. 13, 1587-1597.]). For the bioactivity of 1,2,3-triazoles, see: Chen et al. (2000[Chen, M. D., Lu, S. J., Yuan, G. P., Yang, S. Y. & Du, X. L. (2000). Heterocycl. Commun. 6, 421-426.]); Manfredini et al. (2000[Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343-2346.]). For the synthetic methods, see: Huisgen (1963[Huisgen, R. (1963). Angew. Chem. Int. Ed. 2, 565-598.]); Crisp & Flynn (1993[Crisp, G. T. & Flynn, B. L. (1993). J. Org. Chem. 58, 6614-6619.]); Wu et al. (2004[Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Fréchet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928-3932.]); Navarrete-Vázquez et al. (2007[Navarrete-Vázquez, G., Morena-Diaz, H., Estrado-Soto, S., Torres-Piedra, M., León-Rivera, I., Tlahuext, H., Muñoz-Muñiz, O. & Torres-Gómez, H. (2007). Synth. Commun. 37, 2815-2825.]); Krim et al. (2009[Krim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142-152.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N5O2

  • Mr = 335.37

  • Monoclinic, P 21 /c

  • a = 10.4449 (5) Å

  • b = 7.7754 (4) Å

  • c = 20.2119 (10) Å

  • β = 99.354 (1)°

  • V = 1619.65 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.40 × 0.32 × 0.11 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.990

  • 15768 measured reflections

  • 3295 independent reflections

  • 2562 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.102

  • S = 1.14

  • 3295 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.89 (2) 2.50 (2) 3.244 (2) 141.7 (17)
N1—H1A⋯N5i 0.89 (2) 2.21 (2) 3.088 (2) 170.4 (19)
O2—H2A⋯N2ii 0.92 (3) 1.85 (3) 2.761 (2) 171 (2)
C15—H15A⋯O2iii 0.95 2.54 3.271 (2) 134
C16—H16A⋯O2iii 0.99 2.54 3.258 (2) 129
C17—H17B⋯O1iv 0.99 2.35 3.279 (2) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazoles are important pharmacophores in modern drug discovery (Tebbe et al., 1997). They are present in various bioactive compounds, possessing, e.g. antiparasitic (Navarrete-Vázquez et al., 2003), antimicrobial (Özden et al., 2005), antihistaminic (Terzioglu et al., 2004) and antitumor (Andrzejewska et al., 2002) activities. In addition, 1,2,3-triazoles are potent antibacterial (Chen et al., 2000) and antiproliferative (Manfredini et al., 2000) agents. The most widely used method for their synthesis is the Huisgen 1,3-dipolar cycloaddition of alkynes with organic azides (Huisgen, 1963). Copper-catalyzed click chemistry, involving azides and terminal acetylenes, has enabled practical and efficient preparation of 1,4-disubstituted 1,2,3-triazoles, from a wide range of substrates with excellent selectivity (Wu et al., 2004). In connection to our previous studies on the synthesis of acyclonucleosides (Krim et al., 2009), we decided to explore the feasibility of the click chemistry for the synthesis of novel 1,2,3-triazoles containing a benzimidazole moiety coupled via a benzene ring. Thus the title compound was prepared and its crystal structure is reported herein.

A view of the molecular structure of the title compound is shown in Fig. 1. The molecule contains three planar parts: the benzimidazole, the benzene and the triazole groups. The angle between the benzene and benzimidazole planes is 19.8 (1)°, while the angle between the benzene and triazole planes is 16.7 (1)°. The (2-hydroxyethoxy)methyl group points away from the triazole plane [torsion angle N4—N3—C16—O1: 88.6 (2)°]. The C16—O1 bond has a gauche conformation, while the O1—C17 and the C17—C18 bonds have trans conformations.

The molecules of the title compound are connected by intermolecular O—H···N hydrogen bonds to form zigzag chains along the c axis direction (Fig.2, Table 1). Adjacent molecules in each chain are related by c-gilde plane symmetry. Neighboring chains are connected by intermolecular N—H···N hydrogen bonds between imidazole and triazole groups to form layers parallel to (1 0 0). The N—H···N hydrogen bond is bifurcated with both atoms N4 and N5 acting as acceptor atoms. There are two symmetry-related N—H···N bonds between each pair of molecules. The hydrogen bonded layers are connected along the a axis direction by additional intermolecular weak C—H···O contacts to form a three-dimensional framework.

Related literature top

For the bioactivity of benzimidazoles, see: Tebbe et al. (1997); Andrzejewska et al. (2002); Navarrete-Vázquez et al. (2003); Terzioglu et al. (2004); Özden et al. (2005). For the bioactivity of 1,2,3-triazoles, see: Chen et al. (2000); Manfredini et al. (2000). For the synthetic methods, see: Huisgen (1963); Crisp & Flynn (1993); Wu et al. (2004); Navarrete-Vázquez et al. (2007); Krim et al. (2009).

Experimental top

The title compound has been prepared in four steps starting from 4-[(trimethylsilyl)ethynyl]benzaldehyde. The starting material was reacted with benzimidazole in the presence of sodium metabisulfite using microwave irradiation (Navarrete-Vázquez et al., 2007). The resulting product was deprotected with tetrabutylammonium fluoride in tetrahydrofuran to 2-(4-ethynylphenyl)-1H-benzimidazole (Crisp & Flynn, 1993). Cycloaddition of the latter product with [(2-acetoxyethoxy)methyl]azide in the presence of CuI, followed by deprotection of the acetyl group (Krim et al., 2009), afforded the title compound in good yield. The crude product was purified by passing through a column packed with silica gel. Single crystals suitable for X-ray analysis were obtained by slow recrystallizion from ethanol. The melting point is approximately 502–504 K.

Refinement top

The H atoms on C atoms were positioned geometrically and treated as riding: Cplanar—H=0.95 Å, Cmethylene—H=0.99 Å, Uiso(H)=1.2Ueq(parent C-atom). The H atoms on the N and O atoms were taken from a difference Fourier synthesis and were refined.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of an arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen bonding network of the title compound. Displacement ellipsoids are drawn at the 50% probabilty level. Intermolecular hydrogen bonds are shown as dashed lines. The symmetry codes are: (i) 2 - x, 1 - y, 1 - z; (ii) x, 3/2 - y, 1/2 + z; (v) x, 3/2 - y, -1/2 + z.
2-({4-[4-(1H-Benzimidazol-2-yl)phenyl]-1H- 1,2,3-triazol-1-yl}methoxy)ethanol top
Crystal data top
C18H17N5O2F(000) = 704
Mr = 335.37Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8027 reflections
a = 10.4449 (5) Åθ = 3–24°
b = 7.7754 (4) ŵ = 0.09 mm1
c = 20.2119 (10) ÅT = 170 K
β = 99.354 (1)°Block, yellow
V = 1619.65 (14) Å30.40 × 0.32 × 0.11 mm
Z = 4
Data collection top
Siemens SMART 1K CCD
diffractometer
3295 independent reflections
Radiation source: normal-focus sealed tube2562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 26.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1313
Tmin = 0.953, Tmax = 0.990k = 99
15768 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.023P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
3295 reflectionsΔρmax = 0.20 e Å3
235 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0056 (7)
Crystal data top
C18H17N5O2V = 1619.65 (14) Å3
Mr = 335.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4449 (5) ŵ = 0.09 mm1
b = 7.7754 (4) ÅT = 170 K
c = 20.2119 (10) Å0.40 × 0.32 × 0.11 mm
β = 99.354 (1)°
Data collection top
Siemens SMART 1K CCD
diffractometer
3295 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2562 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.990Rint = 0.047
15768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.20 e Å3
3295 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50237 (13)0.39456 (17)0.71767 (6)0.0308 (3)
O20.67189 (14)0.21899 (18)0.87378 (7)0.0335 (4)
N11.07016 (15)0.9376 (2)0.37941 (8)0.0265 (4)
N20.91403 (15)1.1341 (2)0.37934 (8)0.0277 (4)
N30.56182 (15)0.3846 (2)0.60950 (7)0.0272 (4)
N40.65832 (16)0.2730 (2)0.60375 (8)0.0350 (4)
N50.73569 (16)0.3493 (2)0.56742 (8)0.0331 (4)
C10.95442 (18)0.9778 (2)0.39886 (9)0.0252 (4)
C21.10804 (18)1.0777 (2)0.34516 (9)0.0265 (4)
C31.21525 (18)1.1085 (3)0.31418 (10)0.0317 (5)
H3A1.28231.02560.31480.038*
C41.2198 (2)1.2654 (3)0.28242 (10)0.0350 (5)
H4A1.29181.29120.26080.042*
C51.12061 (19)1.3873 (3)0.28139 (10)0.0343 (5)
H5A1.12671.49360.25890.041*
C61.01424 (19)1.3565 (3)0.31228 (9)0.0310 (5)
H6A0.94711.43930.31120.037*
C71.00880 (17)1.1996 (2)0.34504 (9)0.0257 (4)
C80.88408 (17)0.8577 (2)0.43576 (9)0.0253 (4)
C90.91089 (18)0.6817 (2)0.43692 (9)0.0283 (5)
H9A0.97490.63890.41270.034*
C100.84603 (18)0.5686 (2)0.47263 (9)0.0268 (4)
H10A0.86470.44910.47210.032*
C110.75345 (18)0.6289 (2)0.50939 (9)0.0258 (4)
C120.72431 (18)0.8045 (3)0.50722 (9)0.0288 (5)
H12A0.65950.84690.53100.035*
C130.78828 (18)0.9175 (3)0.47105 (9)0.0289 (5)
H13A0.76711.03640.47010.035*
C140.68875 (18)0.5107 (2)0.55019 (9)0.0256 (4)
C150.57733 (18)0.5326 (2)0.57719 (9)0.0265 (4)
H15A0.52290.63120.57380.032*
C160.46450 (19)0.3426 (3)0.65116 (9)0.0302 (5)
H16A0.38170.39950.63260.036*
H16B0.44950.21680.64990.036*
C170.59651 (18)0.2857 (2)0.75702 (9)0.0288 (4)
H17A0.68290.30180.74380.035*
H17B0.57130.16340.75050.035*
C180.59977 (19)0.3374 (3)0.82907 (10)0.0334 (5)
H18A0.63910.45310.83640.040*
H18B0.50990.34390.83870.040*
H1A1.118 (2)0.846 (3)0.3930 (10)0.040 (6)*
H2A0.756 (3)0.258 (3)0.8779 (12)0.068 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (8)0.0313 (8)0.0286 (7)0.0077 (6)0.0061 (6)0.0048 (6)
O20.0256 (8)0.0346 (8)0.0382 (8)0.0039 (7)0.0008 (6)0.0083 (6)
N10.0222 (9)0.0261 (9)0.0313 (9)0.0041 (7)0.0043 (7)0.0013 (7)
N20.0257 (9)0.0280 (9)0.0289 (9)0.0042 (7)0.0026 (7)0.0002 (7)
N30.0248 (9)0.0285 (9)0.0286 (9)0.0033 (7)0.0053 (7)0.0029 (7)
N40.0326 (10)0.0313 (10)0.0427 (10)0.0087 (8)0.0114 (8)0.0057 (8)
N50.0304 (9)0.0340 (10)0.0362 (9)0.0060 (8)0.0096 (8)0.0050 (8)
C10.0226 (10)0.0288 (11)0.0234 (10)0.0030 (8)0.0015 (8)0.0039 (8)
C20.0250 (10)0.0266 (10)0.0267 (10)0.0009 (8)0.0002 (8)0.0009 (8)
C30.0246 (11)0.0352 (12)0.0357 (11)0.0023 (9)0.0063 (9)0.0009 (9)
C40.0291 (11)0.0408 (13)0.0358 (11)0.0034 (10)0.0073 (9)0.0024 (9)
C50.0342 (12)0.0337 (12)0.0334 (11)0.0038 (10)0.0003 (9)0.0079 (9)
C60.0292 (11)0.0302 (11)0.0316 (11)0.0036 (9)0.0007 (9)0.0012 (9)
C70.0224 (10)0.0289 (11)0.0251 (10)0.0009 (8)0.0017 (8)0.0018 (8)
C80.0226 (10)0.0296 (11)0.0225 (9)0.0023 (8)0.0000 (8)0.0002 (8)
C90.0222 (10)0.0340 (12)0.0287 (10)0.0040 (9)0.0041 (8)0.0043 (9)
C100.0244 (10)0.0265 (10)0.0289 (10)0.0029 (8)0.0020 (8)0.0011 (8)
C110.0233 (10)0.0315 (11)0.0215 (9)0.0014 (8)0.0003 (8)0.0002 (8)
C120.0274 (11)0.0338 (11)0.0262 (10)0.0061 (9)0.0075 (8)0.0007 (9)
C130.0313 (11)0.0270 (11)0.0282 (10)0.0059 (9)0.0043 (9)0.0020 (8)
C140.0248 (10)0.0277 (10)0.0229 (10)0.0040 (8)0.0000 (8)0.0013 (8)
C150.0280 (11)0.0258 (11)0.0250 (10)0.0036 (8)0.0019 (8)0.0005 (8)
C160.0259 (10)0.0335 (11)0.0318 (11)0.0004 (9)0.0063 (9)0.0048 (9)
C170.0271 (11)0.0250 (10)0.0344 (11)0.0022 (9)0.0054 (9)0.0051 (8)
C180.0266 (11)0.0368 (12)0.0360 (11)0.0048 (9)0.0019 (9)0.0020 (9)
Geometric parameters (Å, º) top
O1—C161.398 (2)C6—C71.394 (3)
O1—C171.436 (2)C6—H6A0.9500
O2—C181.418 (2)C8—C91.396 (3)
O2—H2A0.92 (3)C8—C131.399 (3)
N1—C11.367 (2)C9—C101.383 (3)
N1—C21.382 (2)C9—H9A0.9500
N1—H1A0.89 (2)C10—C111.393 (3)
N2—C11.325 (2)C10—H10A0.9500
N2—C71.394 (2)C11—C121.398 (3)
N3—C151.346 (2)C11—C141.471 (3)
N3—N41.349 (2)C12—C131.382 (3)
N3—C161.458 (2)C12—H12A0.9500
N4—N51.318 (2)C13—H13A0.9500
N5—C141.371 (2)C14—C151.374 (3)
C1—C81.465 (3)C15—H15A0.9500
C2—C31.390 (3)C16—H16A0.9900
C2—C71.404 (3)C16—H16B0.9900
C3—C41.383 (3)C17—C181.506 (3)
C3—H3A0.9500C17—H17A0.9900
C4—C51.402 (3)C17—H17B0.9900
C4—H4A0.9500C18—H18A0.9900
C5—C61.381 (3)C18—H18B0.9900
C5—H5A0.9500
C16—O1—C17115.06 (14)C8—C9—H9A119.4
C18—O2—H2A104.2 (16)C9—C10—C11120.37 (18)
C1—N1—C2107.60 (16)C9—C10—H10A119.8
C1—N1—H1A125.3 (13)C11—C10—H10A119.8
C2—N1—H1A126.2 (14)C10—C11—C12118.60 (18)
C1—N2—C7105.41 (15)C10—C11—C14120.69 (17)
C15—N3—N4110.95 (15)C12—C11—C14120.70 (17)
C15—N3—C16128.43 (16)C13—C12—C11121.04 (18)
N4—N3—C16120.43 (15)C13—C12—H12A119.5
N5—N4—N3107.03 (15)C11—C12—H12A119.5
N4—N5—C14109.09 (15)C12—C13—C8120.37 (18)
N2—C1—N1112.19 (17)C12—C13—H13A119.8
N2—C1—C8125.05 (17)C8—C13—H13A119.8
N1—C1—C8122.75 (17)N5—C14—C15107.68 (17)
N1—C2—C3132.73 (18)N5—C14—C11122.44 (17)
N1—C2—C7105.15 (16)C15—C14—C11129.88 (17)
C3—C2—C7122.11 (18)N3—C15—C14105.25 (17)
C4—C3—C2116.87 (19)N3—C15—H15A127.4
C4—C3—H3A121.6C14—C15—H15A127.4
C2—C3—H3A121.6O1—C16—N3112.07 (15)
C3—C4—C5121.50 (19)O1—C16—H16A109.2
C3—C4—H4A119.3N3—C16—H16A109.2
C5—C4—H4A119.3O1—C16—H16B109.2
C6—C5—C4121.51 (19)N3—C16—H16B109.2
C6—C5—H5A119.2H16A—C16—H16B107.9
C4—C5—H5A119.2O1—C17—C18106.53 (15)
C5—C6—C7117.71 (19)O1—C17—H17A110.4
C5—C6—H6A121.1C18—C17—H17A110.4
C7—C6—H6A121.1O1—C17—H17B110.4
C6—C7—N2130.04 (18)C18—C17—H17B110.4
C6—C7—C2120.30 (18)H17A—C17—H17B108.6
N2—C7—C2109.64 (16)O2—C18—C17111.68 (16)
C9—C8—C13118.37 (17)O2—C18—H18A109.3
C9—C8—C1121.16 (17)C17—C18—H18A109.3
C13—C8—C1120.47 (17)O2—C18—H18B109.3
C10—C9—C8121.20 (18)C17—C18—H18B109.3
C10—C9—H9A119.4H18A—C18—H18B107.9
C15—N3—N4—N50.3 (2)C13—C8—C9—C100.8 (3)
C16—N3—N4—N5175.62 (15)C1—C8—C9—C10178.93 (16)
N3—N4—N5—C140.3 (2)C8—C9—C10—C111.1 (3)
C7—N2—C1—N10.1 (2)C9—C10—C11—C122.4 (3)
C7—N2—C1—C8178.63 (17)C9—C10—C11—C14176.93 (17)
C2—N1—C1—N20.3 (2)C10—C11—C12—C131.9 (3)
C2—N1—C1—C8179.09 (16)C14—C11—C12—C13177.50 (17)
C1—N1—C2—C3179.47 (19)C11—C12—C13—C80.0 (3)
C1—N1—C2—C70.60 (19)C9—C8—C13—C121.4 (3)
N1—C2—C3—C4178.25 (19)C1—C8—C13—C12178.36 (17)
C7—C2—C3—C40.5 (3)N4—N5—C14—C150.3 (2)
C2—C3—C4—C50.2 (3)N4—N5—C14—C11179.91 (16)
C3—C4—C5—C60.3 (3)C10—C11—C14—N516.1 (3)
C4—C5—C6—C70.3 (3)C12—C11—C14—N5163.22 (17)
C5—C6—C7—N2179.28 (18)C10—C11—C14—C15163.43 (18)
C5—C6—C7—C21.0 (3)C12—C11—C14—C1517.2 (3)
C1—N2—C7—C6177.95 (19)N4—N3—C15—C140.1 (2)
C1—N2—C7—C20.5 (2)C16—N3—C15—C14174.99 (17)
N1—C2—C7—C6177.94 (16)N5—C14—C15—N30.1 (2)
C3—C2—C7—C61.1 (3)C11—C14—C15—N3179.71 (18)
N1—C2—C7—N20.7 (2)C17—O1—C16—N377.18 (19)
C3—C2—C7—N2179.71 (16)C15—N3—C16—O185.9 (2)
N2—C1—C8—C9160.37 (18)N4—N3—C16—O188.6 (2)
N1—C1—C8—C918.3 (3)C16—O1—C17—C18166.70 (15)
N2—C1—C8—C1319.9 (3)O1—C17—C18—O2169.44 (15)
N1—C1—C8—C13161.50 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.89 (2)2.50 (2)3.244 (2)141.7 (17)
N1—H1A···N5i0.89 (2)2.21 (2)3.088 (2)170.4 (19)
O2—H2A···N2ii0.92 (3)1.85 (3)2.761 (2)171 (2)
C15—H15A···O2iii0.952.543.271 (2)134
C16—H16A···O2iii0.992.543.258 (2)129
C17—H17B···O1iv0.992.353.279 (2)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H17N5O2
Mr335.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)10.4449 (5), 7.7754 (4), 20.2119 (10)
β (°) 99.354 (1)
V3)1619.65 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.32 × 0.11
Data collection
DiffractometerSiemens SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.953, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
15768, 3295, 2562
Rint0.047
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.102, 1.14
No. of reflections3295
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.89 (2)2.50 (2)3.244 (2)141.7 (17)
N1—H1A···N5i0.89 (2)2.21 (2)3.088 (2)170.4 (19)
O2—H2A···N2ii0.92 (3)1.85 (3)2.761 (2)171 (2)
C15—H15A···O2iii0.952.543.271 (2)134.3
C16—H16A···O2iii0.992.543.258 (2)128.8
C17—H17B···O1iv0.992.353.279 (2)155.3
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2.
 

References

First citationAndrzejewska, M., Yépez-Mulia, L., Cedillo-Rivera, R., Tapia, A., Vilpo, L., Vilpo, J. & Kazimierczuk, Z. (2002). Eur. J. Med. Chem. 37, 973–978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, M. D., Lu, S. J., Yuan, G. P., Yang, S. Y. & Du, X. L. (2000). Heterocycl. Commun. 6, 421–426.  CrossRef CAS Google Scholar
First citationCrisp, G. T. & Flynn, B. L. (1993). J. Org. Chem. 58, 6614–6619.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R. (1963). Angew. Chem. Int. Ed. 2, 565–598.  CrossRef Google Scholar
First citationKrim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142–152.  CrossRef Google Scholar
First citationManfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNavarrete-Vázquez, G., Morena-Diaz, H., Estrado-Soto, S., Torres-Piedra, M., León-Rivera, I., Tlahuext, H., Muñoz-Muñiz, O. & Torres-Gómez, H. (2007). Synth. Commun. 37, 2815–2825.  Google Scholar
First citationNavarrete-Vázquez, G., Yépez, L., Hernández-Campos, A., Tapia, A., Hernández-Luis, F., Cedillo, R., González, J., Martínez-Fernández, A., Martínez-Grueiro, M. & Castillo, R. (2003). Bioorg. Med. Chem. 11, 4615–4622.  Web of Science PubMed Google Scholar
First citationÖzden, S., Atabey, D., Yildiz, S. & Göker, H. (2005). Bioorg. Med. Chem. 13, 1587–1597.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTebbe, M. J., Spitzer, W. A., Victor, F., Miller, S. C., Lee, C. C., Sattelberg Sr, T. R., McKinney, E. & Tang, J. C. (1997). J. Med. Chem. 40, 3937–3946.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTerzioglu, N., van Rijn, R. M., Bakker, R. A., De Esch, I. J. P. & Leurs, R. (2004). Bioorg. Med. Chem. Lett. 14, 5251–5256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Fréchet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928–3932.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds