organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Iso­propyl-4-methyl-5-oxo-4,5-di­hydro-1H-imidazol-2-yl)-5-methyl­nicotinic acid

aEngineering Research Center of Pesticides of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 28 April 2012; accepted 7 May 2012; online 12 May 2012)

In the title herbicideh/phytocide, known as imaza­pic, C14H17N3O3, the pyridine and imidazole rings are almost coplanar [dihedral angle = 3.08 (5)°]. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, an N—H⋯O hydrogen bond links mol­ecules into a chain parallel to [010].

Related literature

For the synthesis, see: Szezepanski et al. (1988[Szezepanski, H., Dieter, W. & Bottmingen, D. (1988). US Patent No. US4758667.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N3O3

  • Mr = 275.31

  • Monoclinic, P 21 /c

  • a = 12.102 (2) Å

  • b = 16.035 (3) Å

  • c = 7.2883 (15) Å

  • β = 94.17 (3)°

  • V = 1410.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.60 × 0.30 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.946, Tmax = 0.984

  • 13471 measured reflections

  • 3202 independent reflections

  • 2234 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.145

  • S = 1.00

  • 3202 reflections

  • 192 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 (1) 1.68 (1) 2.4972 (16) 173 (2)
N3—H3⋯O2i 0.90 (1) 2.06 (1) 2.9387 (18) 165 (2)
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imazapic is an effective and widely used herbicide. Imazapic for the control of annual broadleaf and gramineae weeds has important achievements in agriculture. Herein, we report the crystal structure of this herbicide (Scheme I).

The pyridine and imidazole ring are almost coplanar with small dihedral angle of 3.08 (5) ° (Figure 1). There is an intramolecular O—H···N hydrogen bond; an intermolecular N—H···O hydrogen bond links isolated molecules into chain structure along [010] (Figure 2, Table 1).

Related literature top

For the synthesis, see: Szezepanski et al. (1988).

Experimental top

The title compound was prepared by the reaction of diethyl 5-methylpyridine-2,3-dicarboxylate and 2-amino-2,3-dimethylbutanehydrazide according to a method reported in the patent literature. A white powder was obtained in 78% yield (Szezepanski et al., 1988). Colorless crystals were obtained by the recrystallization of title compound from acetonitrile.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 / 0.98 / 0.96 Å (aromatic / methine / methyl), and with Uiso(H) = 1.2 / 1.5 Ueq(C). N-bound and O-bound H atoms were located in a differece Fourier map and was refined with restraint as N—H = 0.90±0.01 Å and O—H = 0.82±0.01 Å, respectively, and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing the hydrogen-bonding chain structure along [010].
2-(4-Isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)- 5-methylnicotinic acid top
Crystal data top
C14H17N3O3F(000) = 584
Mr = 275.31Dx = 1.296 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10539 reflections
a = 12.102 (2) Åθ = 3.1–27.4°
b = 16.035 (3) ŵ = 0.09 mm1
c = 7.2883 (15) ÅT = 293 K
β = 94.17 (3)°Block, colorless
V = 1410.6 (5) Å30.60 × 0.30 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.946, Tmax = 0.984k = 2020
13471 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0979P)2]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H17N3O3V = 1410.6 (5) Å3
Mr = 275.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.102 (2) ŵ = 0.09 mm1
b = 16.035 (3) ÅT = 293 K
c = 7.2883 (15) Å0.60 × 0.30 × 0.18 mm
β = 94.17 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3202 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2234 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.984Rint = 0.033
13471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
3202 reflectionsΔρmin = 0.17 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.01695 (11)0.78025 (8)0.26937 (16)0.0326 (3)
C21.12083 (12)0.76017 (9)0.35266 (18)0.0377 (3)
H21.14000.70430.36800.045*
C31.19647 (12)0.82072 (10)0.41336 (19)0.0414 (3)
C41.16383 (14)0.90226 (10)0.3862 (2)0.0502 (4)
H41.21360.94390.42510.060*
C50.99292 (11)0.86611 (8)0.25086 (18)0.0343 (3)
C60.94567 (12)0.70446 (8)0.2115 (2)0.0380 (3)
C71.30826 (14)0.79919 (12)0.5050 (2)0.0574 (5)
H7A1.36500.81500.42640.086*
H7B1.31220.74020.52750.086*
H7C1.31890.82860.61970.086*
C80.88794 (12)0.90408 (8)0.17407 (18)0.0364 (3)
C90.77171 (13)1.00954 (9)0.1004 (2)0.0463 (4)
C100.71625 (13)0.92605 (9)0.0469 (2)0.0403 (3)
C110.60962 (13)0.91307 (11)0.1470 (2)0.0502 (4)
H110.55700.95650.10370.060*
C120.69487 (16)0.92380 (12)0.1627 (2)0.0565 (5)
H12A0.76370.93040.21870.085*
H12B0.64550.96830.20150.085*
H12C0.66200.87130.19910.085*
C130.62931 (18)0.92271 (16)0.3541 (2)0.0755 (6)
H13A0.68250.88210.40040.113*
H13B0.56090.91450.41040.113*
H13C0.65700.97770.38230.113*
C140.5557 (2)0.82921 (17)0.1010 (4)0.0935 (8)
H14A0.60400.78520.14650.140*
H14B0.54240.82400.02990.140*
H14C0.48660.82550.15760.140*
N11.06558 (11)0.92563 (7)0.30766 (19)0.0475 (3)
N20.80181 (10)0.86483 (7)0.10681 (16)0.0382 (3)
N30.87614 (11)0.98947 (8)0.17332 (19)0.0459 (3)
H30.9282 (14)1.0274 (10)0.208 (3)0.066 (5)*
O10.85037 (10)0.71349 (6)0.12055 (16)0.0499 (3)
H10.8310 (18)0.7624 (4)0.109 (3)0.075*
O20.98114 (10)0.63550 (7)0.25044 (19)0.0606 (4)
O30.73227 (11)1.07853 (7)0.0816 (2)0.0687 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0366 (7)0.0277 (6)0.0341 (6)0.0013 (5)0.0064 (5)0.0019 (5)
C20.0377 (8)0.0335 (7)0.0422 (7)0.0061 (6)0.0051 (6)0.0037 (5)
C30.0362 (8)0.0468 (8)0.0412 (7)0.0022 (6)0.0021 (6)0.0027 (6)
C40.0417 (9)0.0429 (9)0.0641 (9)0.0103 (7)0.0101 (7)0.0015 (7)
C50.0353 (7)0.0283 (6)0.0392 (7)0.0019 (5)0.0021 (5)0.0023 (5)
C60.0399 (8)0.0271 (7)0.0474 (7)0.0013 (6)0.0054 (6)0.0007 (5)
C70.0376 (9)0.0683 (12)0.0649 (10)0.0034 (8)0.0059 (7)0.0029 (8)
C80.0389 (8)0.0257 (7)0.0444 (7)0.0004 (5)0.0019 (6)0.0017 (5)
C90.0439 (9)0.0318 (8)0.0625 (9)0.0029 (6)0.0005 (7)0.0021 (6)
C100.0389 (8)0.0338 (7)0.0470 (8)0.0030 (6)0.0049 (6)0.0013 (6)
C110.0362 (8)0.0590 (10)0.0543 (9)0.0013 (7)0.0032 (6)0.0023 (7)
C120.0643 (11)0.0590 (11)0.0454 (8)0.0105 (8)0.0020 (7)0.0053 (7)
C130.0623 (13)0.1113 (19)0.0536 (10)0.0148 (11)0.0090 (9)0.0095 (10)
C140.0753 (16)0.1046 (18)0.1019 (17)0.0496 (14)0.0153 (13)0.0230 (14)
N10.0431 (8)0.0325 (7)0.0652 (8)0.0056 (5)0.0082 (6)0.0031 (6)
N20.0370 (7)0.0290 (6)0.0478 (6)0.0004 (5)0.0033 (5)0.0015 (5)
N30.0406 (7)0.0266 (6)0.0689 (8)0.0005 (5)0.0075 (6)0.0002 (5)
O10.0463 (6)0.0279 (5)0.0737 (7)0.0019 (5)0.0094 (5)0.0031 (5)
O20.0548 (7)0.0265 (5)0.0989 (9)0.0039 (5)0.0055 (6)0.0038 (5)
O30.0566 (8)0.0315 (6)0.1157 (11)0.0103 (5)0.0100 (7)0.0003 (6)
Geometric parameters (Å, º) top
C1—C21.393 (2)C9—N31.373 (2)
C1—C51.4116 (18)C9—C101.535 (2)
C1—C61.5317 (19)C10—N21.4699 (17)
C2—C31.385 (2)C10—C121.531 (2)
C2—H20.9300C10—C111.542 (2)
C3—C41.376 (2)C11—C131.519 (2)
C3—C71.505 (2)C11—C141.521 (3)
C4—N11.335 (2)C11—H110.9800
C4—H40.9300C12—H12A0.9600
C5—N11.3426 (18)C12—H12B0.9600
C5—C81.4813 (19)C12—H12C0.9600
C6—O21.2124 (17)C13—H13A0.9600
C6—O11.2959 (19)C13—H13B0.9600
C7—H7A0.9600C13—H13C0.9600
C7—H7B0.9600C14—H14A0.9600
C7—H7C0.9600C14—H14B0.9600
C8—N21.2840 (18)C14—H14C0.9600
C8—N31.3767 (18)N3—H30.898 (9)
C9—O31.2087 (18)O1—H10.8203 (10)
C2—C1—C5116.11 (12)N2—C10—C11111.41 (12)
C2—C1—C6114.13 (12)C12—C10—C11112.47 (13)
C5—C1—C6129.76 (12)C9—C10—C11111.28 (13)
C3—C2—C1122.12 (13)C13—C11—C14110.02 (17)
C3—C2—H2118.9C13—C11—C10112.34 (14)
C1—C2—H2118.9C14—C11—C10112.06 (15)
C4—C3—C2116.36 (13)C13—C11—H11107.4
C4—C3—C7121.43 (15)C14—C11—H11107.4
C2—C3—C7122.21 (15)C10—C11—H11107.4
N1—C4—C3124.46 (14)C10—C12—H12A109.5
N1—C4—H4117.8C10—C12—H12B109.5
C3—C4—H4117.8H12A—C12—H12B109.5
N1—C5—C1122.55 (13)C10—C12—H12C109.5
N1—C5—C8110.42 (12)H12A—C12—H12C109.5
C1—C5—C8127.01 (12)H12B—C12—H12C109.5
O2—C6—O1120.56 (13)C11—C13—H13A109.5
O2—C6—C1118.47 (13)C11—C13—H13B109.5
O1—C6—C1120.97 (11)H13A—C13—H13B109.5
C3—C7—H7A109.5C11—C13—H13C109.5
C3—C7—H7B109.5H13A—C13—H13C109.5
H7A—C7—H7B109.5H13B—C13—H13C109.5
C3—C7—H7C109.5C11—C14—H14A109.5
H7A—C7—H7C109.5C11—C14—H14B109.5
H7B—C7—H7C109.5H14A—C14—H14B109.5
N2—C8—N3113.88 (12)C11—C14—H14C109.5
N2—C8—C5126.36 (12)H14A—C14—H14C109.5
N3—C8—C5119.75 (12)H14B—C14—H14C109.5
O3—C9—N3127.10 (15)C4—N1—C5118.40 (13)
O3—C9—C10127.42 (15)C8—N2—C10108.71 (11)
N3—C9—C10105.48 (12)C9—N3—C8109.09 (12)
N2—C10—C12110.19 (13)C9—N3—H3123.8 (13)
N2—C10—C9102.79 (11)C8—N3—H3127.1 (14)
C12—C10—C9108.25 (13)C6—O1—H1113.3 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.82 (1)1.68 (1)2.4972 (16)173 (2)
N3—H3···O2i0.90 (1)2.06 (1)2.9387 (18)165 (2)
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H17N3O3
Mr275.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.102 (2), 16.035 (3), 7.2883 (15)
β (°) 94.17 (3)
V3)1410.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.30 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.946, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13471, 3202, 2234
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 1.00
No. of reflections3202
No. of parameters192
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.8203 (10)1.681 (3)2.4972 (16)173 (2)
N3—H3···O2i0.898 (9)2.062 (11)2.9387 (18)165.0 (19)
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the project of the Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzezepanski, H., Dieter, W. & Bottmingen, D. (1988). US Patent No. US4758667.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds