organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(Benz­yl­oxy)benzyl­­idene]malono­nitrile

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Puzhunan Road No. 30 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kaiguo@njut.edu.cn

(Received 13 April 2012; accepted 4 May 2012; online 12 May 2012)

In the title mol­ecule, C17H12N2O, the dihedral angle between the two benzene rings is 84.98 (10)°. The dicyano­ethyl­ene group is coplanar with the benzene ring to which it is bonded. No classic hydrogen bonds were found in the crystal.

Related literature

For background information and the synthetic procedure for the title compound, see: Kharas et al. (2007[Kharas, G. B., Russell, S. M., Tran, V., Tolefree, Q. L., Tulewicz, D. M., Gora, A., Bajgoric, J., Balco, M. T., Dickey, G. A. & Kladis, G. (2007). J. Macromol. Sci. Part A Pure Appl. Chem., 45, 5-8.]). For a related crystal structure, see: Zhu et al. (2007[Zhu, N., Tran, P., Bell, N. & Stevens, C. L. K. (2007). J. Chem. Crystallogr. 37, 670-683.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O

  • Mr = 260.29

  • Triclinic, [P \overline 1]

  • a = 6.8470 (14) Å

  • b = 9.6270 (19) Å

  • c = 10.544 (2) Å

  • α = 100.66 (3)°

  • β = 91.65 (3)°

  • γ = 94.26 (3)°

  • V = 680.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.992

  • 2722 measured reflections

  • 2496 independent reflections

  • 1664 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.176

  • S = 1.00

  • 2496 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of the title compound has been reoprted previously (Kharas et al., 2007). It is a key intermediate in our studies of cardiovascular drugs. In this paper we report the crystal structure of the title compound.

In the title compound (Fig. 1), the dihedral angle between the benzene rings C1–C6 and C8–C13 is 84.98 (10) °. The dicyanoethylene group (N1/N2/C14–C17) is almost coplanar with the benzene ring C8–C13, with a dihedral angles between the two planes being 0.71 (8) °. The structure is devoid of any hydrogen bondinhg interactions (Fig. 2).

Related literature top

For background information and the synthetic procedure for the title compound, see: Kharas et al. (2007). For a related crystal structure, see: Zhu et al. (2007).

Experimental top

To a solution of 4-(benzyloxy)benzaldehyde (10.01 mmol, 2.12 g) and malononitrile (10.14 mmol, 0.67 g) in ethanol (20 ml) was added triethylamine (0.31 ml) and the reaction mixture was heated to 338.15 K for 3 h. The reaction mixture was cooled to room temperature and then filtered to get the title compound (2.43 g) as pure a yellow solid (Kharas et al., 2007). Crystals of the title compound for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å, for aryl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the unit cell packing of the title compound.
2-[4-(Benzyloxy)benzylidene]malononitrile top
Crystal data top
C17H12N2OZ = 2
Mr = 260.29F(000) = 272
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8470 (14) ÅCell parameters from 25 reflections
b = 9.6270 (19) Åθ = 9–13°
c = 10.544 (2) ŵ = 0.08 mm1
α = 100.66 (3)°T = 293 K
β = 91.65 (3)°Block, yellow
γ = 94.26 (3)°0.30 × 0.20 × 0.10 mm
V = 680.5 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1664 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.976, Tmax = 0.992l = 1212
2722 measured reflections3 standard reflections every 200 reflections
2496 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.110P]
where P = (Fo2 + 2Fc2)/3
2496 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H12N2Oγ = 94.26 (3)°
Mr = 260.29V = 680.5 (2) Å3
Triclinic, P1Z = 2
a = 6.8470 (14) ÅMo Kα radiation
b = 9.6270 (19) ŵ = 0.08 mm1
c = 10.544 (2) ÅT = 293 K
α = 100.66 (3)°0.30 × 0.20 × 0.10 mm
β = 91.65 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1664 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.976, Tmax = 0.9923 standard reflections every 200 reflections
2722 measured reflections intensity decay: 1%
2496 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2496 reflectionsΔρmin = 0.18 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.2390 (3)0.75384 (16)0.34116 (15)0.0569 (5)
N10.2812 (4)1.3682 (3)0.0440 (2)0.0787 (8)
C10.0380 (4)0.6905 (3)0.5996 (3)0.0660 (7)
H1A0.07030.73230.57290.079*
N20.2608 (4)1.1632 (3)0.3621 (2)0.0701 (7)
C20.0139 (6)0.5918 (3)0.6777 (3)0.0797 (9)
H2A0.11060.56770.70400.096*
C30.1676 (7)0.5300 (3)0.7164 (3)0.0851 (10)
H3A0.14900.46330.76940.102*
C40.3527 (7)0.5639 (4)0.6788 (3)0.0929 (11)
H4A0.45890.52010.70580.111*
C50.3809 (5)0.6648 (3)0.5994 (3)0.0763 (9)
H5A0.50570.68850.57350.092*
C60.2224 (4)0.7285 (2)0.5601 (2)0.0538 (6)
C70.2449 (4)0.8328 (3)0.4716 (2)0.0596 (7)
H7A0.13950.89550.48230.072*
H7B0.36860.88990.49110.072*
C80.2438 (3)0.8250 (2)0.2424 (2)0.0459 (6)
C90.2554 (4)0.9733 (2)0.2554 (2)0.0502 (6)
H9A0.26171.03030.33710.060*
C100.2575 (4)1.0339 (2)0.1472 (2)0.0503 (6)
H10A0.26571.13210.15690.060*
C110.2476 (3)0.9510 (2)0.0223 (2)0.0453 (6)
C120.2362 (4)0.8023 (2)0.0131 (2)0.0518 (6)
H12A0.22960.74440.06820.062*
C130.2346 (4)0.7412 (2)0.1198 (2)0.0519 (6)
H13A0.22730.64300.11040.062*
C140.2497 (3)1.0026 (2)0.0972 (2)0.0486 (6)
H14A0.24290.93120.17030.058*
C150.2598 (3)1.1353 (3)0.1240 (2)0.0497 (6)
C160.2724 (4)1.2637 (3)0.0292 (2)0.0559 (6)
C170.2608 (4)1.1526 (3)0.2562 (3)0.0538 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0747 (12)0.0428 (9)0.0535 (10)0.0013 (8)0.0064 (8)0.0105 (7)
N10.103 (2)0.0531 (14)0.0792 (16)0.0068 (13)0.0117 (14)0.0093 (13)
C10.0692 (19)0.0665 (17)0.0622 (16)0.0038 (14)0.0117 (14)0.0110 (13)
N20.0831 (18)0.0672 (15)0.0647 (15)0.0099 (12)0.0025 (12)0.0237 (12)
C20.104 (3)0.0676 (18)0.0684 (18)0.0049 (18)0.0198 (18)0.0170 (15)
C30.139 (4)0.0565 (17)0.0603 (18)0.003 (2)0.009 (2)0.0129 (14)
C40.119 (3)0.080 (2)0.083 (2)0.029 (2)0.021 (2)0.0185 (18)
C50.072 (2)0.0768 (19)0.0817 (19)0.0125 (16)0.0042 (16)0.0169 (17)
C60.0641 (17)0.0455 (13)0.0498 (13)0.0016 (12)0.0016 (12)0.0050 (11)
C70.0664 (17)0.0526 (14)0.0582 (15)0.0008 (12)0.0042 (13)0.0080 (12)
C80.0451 (13)0.0403 (12)0.0533 (13)0.0017 (10)0.0039 (10)0.0122 (10)
C90.0575 (15)0.0398 (12)0.0517 (13)0.0046 (10)0.0032 (11)0.0039 (10)
C100.0536 (15)0.0373 (12)0.0597 (14)0.0038 (10)0.0042 (11)0.0084 (10)
C110.0387 (12)0.0431 (12)0.0546 (13)0.0029 (10)0.0033 (10)0.0103 (10)
C120.0539 (15)0.0441 (13)0.0536 (14)0.0028 (11)0.0021 (11)0.0002 (11)
C130.0602 (16)0.0339 (11)0.0601 (14)0.0003 (10)0.0026 (12)0.0060 (11)
C140.0452 (14)0.0457 (12)0.0540 (13)0.0056 (10)0.0004 (11)0.0068 (10)
C150.0439 (13)0.0522 (14)0.0543 (14)0.0073 (11)0.0045 (11)0.0119 (11)
C160.0590 (16)0.0521 (15)0.0595 (15)0.0054 (12)0.0057 (12)0.0170 (13)
C170.0525 (15)0.0530 (14)0.0597 (16)0.0086 (11)0.0005 (12)0.0191 (12)
Geometric parameters (Å, º) top
O—C81.348 (3)C7—H7B0.9700
O—C71.441 (3)C8—C131.388 (3)
N1—C161.146 (3)C8—C91.405 (3)
C1—C21.373 (4)C9—C101.374 (3)
C1—C61.385 (4)C9—H9A0.9300
C1—H1A0.9300C10—C111.405 (3)
N2—C171.140 (3)C10—H10A0.9300
C2—C31.337 (5)C11—C121.413 (3)
C2—H2A0.9300C11—C141.437 (3)
C3—C41.374 (5)C12—C131.362 (3)
C3—H3A0.9300C12—H12A0.9300
C4—C51.401 (5)C13—H13A0.9300
C4—H4A0.9300C14—C151.356 (3)
C5—C61.376 (4)C14—H14A0.9300
C5—H5A0.9300C15—C161.434 (4)
C6—C71.495 (3)C15—C171.434 (4)
C7—H7A0.9700
C8—O—C7119.02 (18)O—C8—C9125.1 (2)
C2—C1—C6120.6 (3)C13—C8—C9119.4 (2)
C2—C1—H1A119.7C10—C9—C8119.9 (2)
C6—C1—H1A119.7C10—C9—H9A120.1
C3—C2—C1120.6 (3)C8—C9—H9A120.1
C3—C2—H2A119.7C9—C10—C11121.6 (2)
C1—C2—H2A119.7C9—C10—H10A119.2
C2—C3—C4120.7 (3)C11—C10—H10A119.2
C2—C3—H3A119.7C10—C11—C12116.8 (2)
C4—C3—H3A119.7C10—C11—C14126.4 (2)
C3—C4—C5119.7 (3)C12—C11—C14116.7 (2)
C3—C4—H4A120.2C13—C12—C11122.0 (2)
C5—C4—H4A120.2C13—C12—H12A119.0
C6—C5—C4119.5 (3)C11—C12—H12A119.0
C6—C5—H5A120.3C12—C13—C8120.3 (2)
C4—C5—H5A120.3C12—C13—H13A119.9
C5—C6—C1119.0 (3)C8—C13—H13A119.9
C5—C6—C7121.2 (3)C15—C14—C11132.4 (2)
C1—C6—C7119.8 (2)C15—C14—H14A113.8
O—C7—C6107.69 (19)C11—C14—H14A113.8
O—C7—H7A110.2C14—C15—C16125.0 (2)
C6—C7—H7A110.2C14—C15—C17119.1 (2)
O—C7—H7B110.2C16—C15—C17115.9 (2)
C6—C7—H7B110.2N1—C16—C15178.1 (3)
H7A—C7—H7B108.5N2—C17—C15178.5 (3)
O—C8—C13115.49 (19)
C6—C1—C2—C30.4 (4)C13—C8—C9—C100.0 (4)
C1—C2—C3—C40.0 (5)C8—C9—C10—C110.2 (4)
C2—C3—C4—C50.3 (5)C9—C10—C11—C120.3 (3)
C3—C4—C5—C60.1 (5)C9—C10—C11—C14179.6 (2)
C4—C5—C6—C10.4 (4)C10—C11—C12—C130.1 (3)
C4—C5—C6—C7177.8 (2)C14—C11—C12—C13179.5 (2)
C2—C1—C6—C50.6 (4)C11—C12—C13—C80.1 (4)
C2—C1—C6—C7178.1 (2)O—C8—C13—C12179.3 (2)
C8—O—C7—C6175.8 (2)C9—C8—C13—C120.2 (4)
C5—C6—C7—O84.0 (3)C10—C11—C14—C150.5 (4)
C1—C6—C7—O93.4 (3)C12—C11—C14—C15179.8 (2)
C7—O—C8—C13179.1 (2)C11—C14—C15—C160.3 (4)
C7—O—C8—C90.4 (3)C11—C14—C15—C17179.4 (2)
O—C8—C9—C10179.4 (2)

Experimental details

Crystal data
Chemical formulaC17H12N2O
Mr260.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8470 (14), 9.6270 (19), 10.544 (2)
α, β, γ (°)100.66 (3), 91.65 (3), 94.26 (3)
V3)680.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2722, 2496, 1664
Rint0.022
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.176, 1.00
No. of reflections2496
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research work was supported financially by the College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology and the `973' project (grant No. 2012CB725204) of the Key Basic Research Program of China.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKharas, G. B., Russell, S. M., Tran, V., Tolefree, Q. L., Tulewicz, D. M., Gora, A., Bajgoric, J., Balco, M. T., Dickey, G. A. & Kladis, G. (2007). J. Macromol. Sci. Part A Pure Appl. Chem., 45, 5–8.  CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, N., Tran, P., Bell, N. & Stevens, C. L. K. (2007). J. Chem. Crystallogr. 37, 670–683.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds