organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Adamantan-1-ylcarbon­yl)-3-(2,6-di­fluoro-4-hy­dr­oxy­phen­yl)thio­urea

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Assiut University, Assiut, Egypt, cDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and dDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: sohail262001@yahoo.com

(Received 13 April 2012; accepted 26 April 2012; online 2 May 2012)

In the title mol­ecule, C18H20F2N2O2S, the 2,6-difluoro-4-hy­droxy­phenyl ring and the carbonyl­thio­urea group are each essentially planar, with maximum deviations of atoms from their mean planes of 0.0113 (14) and 0.1017 (15) Å, respectively; the dihedral angle between these two planes is 71.03 (6)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, N—H⋯O and O—H⋯S hydrogen bonds connect the mol­ecules into chains running diagonally across the bc plane. C—H⋯S and C—H⋯F contacts are also observed.

Related literature

For background studies of thio­urea derivatives, see: Saeed et al. (2011[Saeed, S., Rashid, N., Hussain, R. & Jones, P. G. (2011). Eur. J. Chem. 2, 77-82.]). For a related structure, see: Saeed et al. (2010[Saeed, S., Rashid, N., Bhatti, M. H. & Jones, P. G. (2010). Turk. J. Chem. 34, 761-770.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20F2N2O2S

  • Mr = 366.42

  • Triclinic, [P \overline 1]

  • a = 7.3985 (9) Å

  • b = 10.4953 (13) Å

  • c = 12.4094 (15) Å

  • α = 65.554 (2)°

  • β = 79.372 (2)°

  • γ = 89.766 (2)°

  • V = 859.34 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.38 × 0.36 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.982

  • 4824 measured reflections

  • 2976 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.04

  • 2976 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.79 (2) 2.09 (2) 2.692 (2) 133 (2)
N1—H1⋯O2i 0.79 (2) 2.52 (2) 3.185 (3) 142 (2)
O1—H1O⋯S1ii 0.87 (3) 2.36 (3) 3.212 (2) 169 (3)
C14—H14A⋯S1iii 0.97 2.84 3.761 (2) 159
C14—H14B⋯F1iv 0.97 2.45 3.354 (3) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+2; (iii) -x+2, -y, -z+1; (iv) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies on structural chemistry of N,N'-disubstituted thiourea (Saeed, et al., 2011), the structure of the title compound is described in this article.

In the title molecule (Fig. 1), the 2,6-difluoro-4-hydroxy-phenyl ring (C1–C6/O1/F1/F2) and the carbonyl thiourea group (S1/N1/N2/O2/C7/C8) are individually more or less planar, with maximum deviations of atoms from their mean planes being 0.0113 (14) Å for O1 and 0.1017 (15) Å for N2, respectively; the dihedral angle between these two planes is 71.03 (6)°.

Hydrogen bonding interactions were observed in the crystal lattice which connect the molecules into 1-D chains running diagonally across the b-c-plane (Table 1 and Fig. 2).

Related literature top

For background studies of thiourea derivatives, see: Saeed et al. (2011). For a related structure, see: Saeed et al. (2010).

Experimental top

A mixture of adamantane-1-carbonyl chloride (199 mg, 1 mmol), 4-amino-3,5-difluorophenol (145 mg, 1 mmol) and potassium thiocyanate (100 mg) was heated for 30 minutes in ethanol (5 ml) at 351 K. The reaction mixture was left overnight to cool down at room temperature to afford a solid product which was filtered off, washed and recrystallized from ethanol. Colorless crystals suitable for X-ray crystallographic studies were collected and dried (yield = 82%; m. p. = 455-456 K).

Refinement top

The C-bound H atoms were placed at geometrically idealized positions with C—H = 0.93, 0.97 and 0.98 Å for phenyl, methylene and methine H-atoms, respectively, and were refined using riding model with Uiso(H) = 1.2Ueq(C). The N and O-bound H atoms were located from a difference Fourier map and were refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O and O—H···S hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
1-(Adamantan-1-ylcarbonyl)-3-(2,6-difluoro-4-hydroxyphenyl)thiourea top
Crystal data top
C18H20F2N2O2SZ = 2
Mr = 366.42F(000) = 384
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3985 (9) ÅCell parameters from 4824 reflections
b = 10.4953 (13) Åθ = 2.8–25.0°
c = 12.4094 (15) ŵ = 0.22 mm1
α = 65.554 (2)°T = 296 K
β = 79.372 (2)°Plate, colourless
γ = 89.766 (2)°0.38 × 0.36 × 0.08 mm
V = 859.34 (18) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2976 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ω & ϕ scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.920, Tmax = 0.982k = 912
4824 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.3498P]
where P = (Fo2 + 2Fc2)/3
2976 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H20F2N2O2Sγ = 89.766 (2)°
Mr = 366.42V = 859.34 (18) Å3
Triclinic, P1Z = 2
a = 7.3985 (9) ÅMo Kα radiation
b = 10.4953 (13) ŵ = 0.22 mm1
c = 12.4094 (15) ÅT = 296 K
α = 65.554 (2)°0.38 × 0.36 × 0.08 mm
β = 79.372 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2976 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2399 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.982Rint = 0.010
4824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
2976 reflectionsΔρmin = 0.18 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98449 (8)0.02031 (6)0.68281 (5)0.05290 (18)
F11.3675 (2)0.16253 (18)0.66290 (12)0.0801 (5)
F20.81301 (19)0.25665 (16)0.85556 (13)0.0769 (4)
O11.2972 (3)0.08462 (19)1.06720 (15)0.0659 (5)
H1O1.212 (4)0.076 (3)1.128 (3)0.095 (11)*
O20.8566 (3)0.42734 (17)0.47025 (18)0.0918 (7)
N11.0107 (3)0.2470 (2)0.64901 (16)0.0533 (5)
H10.993 (3)0.327 (3)0.613 (2)0.061 (7)*
N20.8692 (3)0.19619 (19)0.51851 (15)0.0481 (4)
H20.838 (3)0.132 (2)0.5017 (18)0.046 (6)*
C11.0863 (3)0.2106 (2)0.75458 (17)0.0465 (5)
C21.2611 (3)0.1657 (2)0.76211 (18)0.0508 (5)
C31.3321 (3)0.1234 (2)0.86477 (18)0.0521 (5)
H31.45010.09260.86620.063*
C41.2233 (3)0.1278 (2)0.96622 (17)0.0467 (5)
C51.0489 (3)0.1751 (2)0.96344 (18)0.0491 (5)
H50.97680.18031.03110.059*
C60.9851 (3)0.2141 (2)0.85798 (19)0.0484 (5)
C70.9559 (3)0.1514 (2)0.61553 (16)0.0433 (5)
C80.8121 (3)0.3264 (2)0.45461 (19)0.0517 (5)
C90.6926 (3)0.3338 (2)0.36480 (16)0.0417 (4)
C100.5468 (3)0.4380 (2)0.3671 (2)0.0615 (6)
H10A0.46910.40410.44710.074*
H10B0.60720.52850.34880.074*
C110.4287 (4)0.4539 (3)0.2740 (3)0.0733 (8)
H110.33570.52000.27610.088*
C120.3332 (3)0.3132 (3)0.3014 (3)0.0759 (8)
H12A0.25370.27680.38100.091*
H12B0.25730.32460.24260.091*
C130.4766 (3)0.2112 (2)0.2971 (2)0.0541 (5)
H130.41430.12040.31510.065*
C140.5933 (3)0.1922 (2)0.39204 (18)0.0457 (5)
H14A0.68340.12510.39120.055*
H14B0.51450.15590.47180.055*
C150.8154 (3)0.3888 (3)0.23861 (19)0.0575 (6)
H15A0.90720.32320.23630.069*
H15B0.87930.47830.21970.069*
C160.6960 (4)0.4067 (3)0.1452 (2)0.0684 (7)
H160.77440.44320.06430.082*
C170.6014 (3)0.2650 (3)0.1738 (2)0.0631 (6)
H17A0.52970.27440.11330.076*
H17B0.69320.19900.17280.076*
C180.5517 (4)0.5102 (3)0.1499 (2)0.0811 (9)
H18A0.61290.60030.13200.097*
H18B0.47780.52380.08960.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0726 (4)0.0439 (3)0.0474 (3)0.0169 (3)0.0265 (3)0.0185 (2)
F10.0762 (10)0.1176 (13)0.0479 (8)0.0208 (9)0.0104 (7)0.0372 (8)
F20.0675 (9)0.0973 (11)0.0828 (10)0.0420 (8)0.0378 (8)0.0454 (9)
O10.0662 (11)0.0889 (13)0.0456 (9)0.0123 (9)0.0283 (8)0.0240 (9)
O20.1500 (18)0.0459 (10)0.1119 (15)0.0241 (10)0.0993 (14)0.0348 (10)
N10.0806 (14)0.0408 (10)0.0478 (10)0.0158 (10)0.0380 (10)0.0175 (9)
N20.0674 (12)0.0421 (10)0.0468 (10)0.0137 (9)0.0317 (9)0.0221 (8)
C10.0626 (13)0.0406 (11)0.0417 (11)0.0084 (10)0.0255 (10)0.0165 (9)
C20.0556 (13)0.0596 (13)0.0379 (11)0.0067 (10)0.0114 (9)0.0203 (10)
C30.0463 (12)0.0630 (14)0.0465 (12)0.0087 (10)0.0163 (9)0.0194 (10)
C40.0523 (12)0.0483 (12)0.0398 (11)0.0010 (9)0.0199 (9)0.0142 (9)
C50.0561 (13)0.0529 (12)0.0414 (11)0.0070 (10)0.0134 (9)0.0214 (10)
C60.0515 (12)0.0458 (11)0.0549 (12)0.0139 (9)0.0240 (10)0.0226 (10)
C70.0497 (11)0.0473 (11)0.0370 (10)0.0114 (9)0.0172 (9)0.0183 (9)
C80.0689 (14)0.0439 (12)0.0497 (12)0.0104 (10)0.0311 (11)0.0192 (10)
C90.0494 (11)0.0394 (10)0.0394 (10)0.0077 (9)0.0197 (9)0.0152 (9)
C100.0797 (16)0.0561 (14)0.0650 (14)0.0285 (12)0.0339 (12)0.0335 (12)
C110.0812 (18)0.0689 (17)0.0902 (19)0.0416 (14)0.0524 (16)0.0393 (15)
C120.0513 (14)0.090 (2)0.096 (2)0.0159 (13)0.0330 (14)0.0404 (16)
C130.0497 (12)0.0524 (13)0.0647 (14)0.0012 (10)0.0258 (11)0.0232 (11)
C140.0472 (11)0.0448 (11)0.0428 (11)0.0029 (9)0.0128 (9)0.0145 (9)
C150.0553 (13)0.0594 (14)0.0500 (12)0.0110 (11)0.0106 (10)0.0152 (11)
C160.0849 (18)0.0748 (17)0.0357 (11)0.0125 (14)0.0149 (11)0.0124 (11)
C170.0784 (16)0.0709 (16)0.0530 (13)0.0091 (13)0.0310 (12)0.0314 (12)
C180.124 (2)0.0520 (14)0.0721 (17)0.0101 (15)0.0662 (17)0.0112 (13)
Geometric parameters (Å, º) top
S1—C71.675 (2)C10—C111.529 (3)
F1—C21.346 (2)C10—H10A0.9700
F2—C61.349 (2)C10—H10B0.9700
O1—C41.362 (2)C11—C181.512 (4)
O1—H1O0.87 (3)C11—C121.517 (4)
O2—C81.211 (2)C11—H110.9800
N1—C71.325 (3)C12—C131.514 (3)
N1—C11.425 (2)C12—H12A0.9700
N1—H10.79 (2)C12—H12B0.9700
N2—C71.377 (2)C13—C171.510 (3)
N2—C81.377 (3)C13—C141.534 (3)
N2—H20.83 (2)C13—H130.9800
C1—C61.376 (3)C14—H14A0.9700
C1—C21.380 (3)C14—H14B0.9700
C2—C31.369 (3)C15—C161.535 (3)
C3—C41.382 (3)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.382 (3)C16—C171.519 (3)
C5—C61.373 (3)C16—C181.531 (4)
C5—H50.9300C16—H160.9800
C8—C91.523 (2)C17—H17A0.9700
C9—C151.531 (3)C17—H17B0.9700
C9—C101.538 (3)C18—H18A0.9700
C9—C141.538 (3)C18—H18B0.9700
C4—O1—H1O109 (2)C18—C11—H11109.4
C7—N1—C1122.30 (17)C12—C11—H11109.4
C7—N1—H1119.5 (17)C10—C11—H11109.4
C1—N1—H1118.0 (17)C13—C12—C11109.5 (2)
C7—N2—C8129.89 (18)C13—C12—H12A109.8
C7—N2—H2113.5 (14)C11—C12—H12A109.8
C8—N2—H2116.3 (14)C13—C12—H12B109.8
C6—C1—C2115.57 (17)C11—C12—H12B109.8
C6—C1—N1121.27 (19)H12A—C12—H12B108.2
C2—C1—N1123.14 (19)C17—C13—C12110.9 (2)
F1—C2—C3118.07 (19)C17—C13—C14109.09 (17)
F1—C2—C1118.10 (17)C12—C13—C14109.23 (19)
C3—C2—C1123.83 (19)C17—C13—H13109.2
C2—C3—C4118.00 (19)C12—C13—H13109.2
C2—C3—H3121.0C14—C13—H13109.2
C4—C3—H3121.0C13—C14—C9109.91 (16)
O1—C4—C5122.39 (19)C13—C14—H14A109.7
O1—C4—C3116.74 (19)C9—C14—H14A109.7
C5—C4—C3120.87 (17)C13—C14—H14B109.7
C6—C5—C4118.13 (19)C9—C14—H14B109.7
C6—C5—H5120.9H14A—C14—H14B108.2
C4—C5—H5120.9C9—C15—C16109.42 (18)
F2—C6—C5118.48 (19)C9—C15—H15A109.8
F2—C6—C1117.93 (17)C16—C15—H15A109.8
C5—C6—C1123.58 (19)C9—C15—H15B109.8
N1—C7—N2117.75 (17)C16—C15—H15B109.8
N1—C7—S1124.67 (14)H15A—C15—H15B108.2
N2—C7—S1117.59 (15)C17—C16—C18110.1 (2)
O2—C8—N2120.81 (18)C17—C16—C15109.17 (19)
O2—C8—C9123.18 (18)C18—C16—C15109.3 (2)
N2—C8—C9116.01 (17)C17—C16—H16109.4
C8—C9—C15108.41 (17)C18—C16—H16109.4
C8—C9—C10107.81 (16)C15—C16—H16109.4
C15—C9—C10109.33 (17)C13—C17—C16109.20 (19)
C8—C9—C14114.03 (15)C13—C17—H17A109.8
C15—C9—C14108.57 (16)C16—C17—H17A109.8
C10—C9—C14108.62 (17)C13—C17—H17B109.8
C11—C10—C9109.65 (17)C16—C17—H17B109.8
C11—C10—H10A109.7H17A—C17—H17B108.3
C9—C10—H10A109.7C11—C18—C16109.77 (19)
C11—C10—H10B109.7C11—C18—H18A109.7
C9—C10—H10B109.7C16—C18—H18A109.7
H10A—C10—H10B108.2C11—C18—H18B109.7
C18—C11—C12109.5 (2)C16—C18—H18B109.7
C18—C11—C10108.9 (2)H18A—C18—H18B108.2
C12—C11—C10110.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.79 (2)2.09 (2)2.692 (2)133 (2)
N1—H1···O2i0.79 (2)2.52 (2)3.185 (3)142 (2)
O1—H1O···S1ii0.87 (3)2.36 (3)3.212 (2)169 (3)
C14—H14A···S1iii0.972.843.761 (2)159
C14—H14B···F1iv0.972.453.354 (3)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+2; (iii) x+2, y, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H20F2N2O2S
Mr366.42
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.3985 (9), 10.4953 (13), 12.4094 (15)
α, β, γ (°)65.554 (2), 79.372 (2), 89.766 (2)
V3)859.34 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.38 × 0.36 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.920, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4824, 2976, 2399
Rint0.010
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.04
No. of reflections2976
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.79 (2)2.09 (2)2.692 (2)133 (2)
N1—H1···O2i0.79 (2)2.52 (2)3.185 (3)142 (2)
O1—H1O···S1ii0.87 (3)2.36 (3)3.212 (2)169 (3)
C14—H14A···S1iii0.972.843.761 (2)159
C14—H14B···F1iv0.972.453.354 (3)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+2; (iii) x+2, y, z+1; (iv) x1, y, z.
 

Acknowledgements

SS is thankful to the University of Hong Kong for providing the facility for crystallographic studies.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Bhatti, M. H. & Jones, P. G. (2010). Turk. J. Chem. 34, 761–770.  CAS Google Scholar
First citationSaeed, S., Rashid, N., Hussain, R. & Jones, P. G. (2011). Eur. J. Chem. 2, 77–82.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds