organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Caffeine–*N*-phthaloyl- β -alanine (1/1)

Moazzam H. Bhatti,^a* Uzma Yunus,^a Syed Raza Shah^a and Ulrich Flörke^b

^aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and ^bAnorganische und Analytische Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: moazzamhussain_b@yahoo.com

Received 7 May 2012; accepted 18 May 2012

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.106; data-to-parameter ratio = 15.8.

The title co-crystal [systematic name: 3-(1,3-dioxoisoindolin-2yl)propanoic acid-1,3,7-trimethyl-1*H*-purine-2,6(3*H*,7*H*)dione (1/1)], $C_8H_{10}N_4O_2\cdot C_{11}H_9NO_4$, is the combination of 1:1 adduct of *N*-phthaloyl- β -alanine with caffeine. The phthalimide and purine rings in the *N*-phthaloyl- β -alanine and caffeine molecules are essentially planar, with r.m.s. deviations of the fitted atoms of 0.0078 and 0.0118 Å, respectively. In the crystal, the two molecules are linked *via* an O-H···N hydrogen bond involving the intact carboxylic acid (COOH) group. The crystal structure is consolidated by C-H···O interactions. The H atoms of a methyl group of the caffeine molecule are disordered over two sets of sites of equal occupancy.

Related literature

For related structures, see: Bhatti *et al.* (2011); Feeder & Jones (1996).

CrossMar

Experimental

Crystal data

 $C_8H_{10}N_4O_2 \cdot C_{11}H_9NO_4$ $\gamma = 72.865 (4)^{\circ}$
 $M_r = 413.39$ $V = 924.6 (3) \text{ Å}^3$

 Triclinic, $P\overline{1}$ Z = 2

 a = 8.3411 (17) Å Mo K α radiation

 b = 9.0638 (18) Å $\mu = 0.11 \text{ mm}^{-1}$

 c = 13.162 (3) Å T = 130 K

 $\alpha = 77.105 (4)^{\circ}$ $0.42 \times 0.40 \times 0.35 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min} = 0.954, T_{\rm max} = 0.962$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	
$wR(F^2) = 0.106$	
S = 1.03	
4378 reflections	

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O4−H4···N3 ⁱ	0.84	1.83	2.6672 (13)	175
$C3-H3A\cdots O5^{ii}$	0.95	2.26	3.1447 (16)	155
C6−H6A···O3 ⁱⁱⁱ	0.95	2.31	3.2283 (16)	162
$C20-H20B\cdots O6^{iv}$	0.98	2.35	3.2559 (16)	154

8826 measured reflections 4378 independent reflections

 $R_{\rm int} = 0.022$

277 parameters

 $\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.26 \text{ e } \text{\AA}^{-3}$

3752 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x, -y + 1, -z + 1; (iii) x, y + 1, z; (iv) -x, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and local programs.

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2544).

References

Bhatti, M. H., Yunus, U., Saeed, S., Shah, S. R. & Wong, W.-T. (2011). Acta Cryst. E67, o2240.

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 913-919.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2012). E68, o1888 [doi:10.1107/S1600536812022696]

Caffeine–*N*-phthaloyl- β -alanine (1/1)

Moazzam H. Bhatti, Uzma Yunus, Syed Raza Shah and Ulrich Flörke

S1. Comment

Previously we have reported the synthesis and crystal structure of a 1:1 adduct of *N*-phthaloylglycine with caffeine (Bhatti *et al.*, 2011). Now we have synthesized a 1:1 adduct of *N*-phthaloyl- β -alanine with caffeine and determined its crystal structure which is reported in this article.

The asymmetric unit of the title adduct is presented in Figure 1. The phthalimide and purine rings in the *N*-phthaloyl- β alanine and caffeine molecules are essentailly planar with rms deviations of fitted atoms 0.0078 and 0.0118 Å, respectively; the dihedral angle between the mean-planes of these rings is 5.59 (5)°. The dihedral angle between phthlimide and propanoic acid is 6.5 (1)° slightly less than reported value of *N*-phthaloyl- β -alanine (Feeder & Jones, 1996). The carbon oxygen distance in the carboxylic acid group (COOH) show typical double and single bond values [C11—O3 = 1.2066 (15) Å and C11—O4 = 1.3312 (14) Å, respectively]], indicating intact protonation of carboxylic acid group. This is further strengthened by intermolecular O4—H4…N3 hydrogen bonding which link the two molecules (Fig. 2). The crystal structure is further consolidated by C—H…O type intermolecular interactions (Table 1).

S2. Experimental

A mixture of *N*-phthaloyl- β -alanine (0.01 mol) and caffeine (0.01 mol) was heated in water (100 ml) for 2 h. The hot solution was filtered and the filtrate was set aside for one week. Colourless needle like crystals were obtained suitable for X-ray analysis.

S3. Refinement

Although all hydrogen atoms were clearly identified in difference syntheses, they were positioned geometrically and refined using a riding model, with O—H = 0.84 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The $U_{iso}(H)$ were allowed at $1.5U_{eq}(O/C \text{ methyl})$ or $1.2U_{eq}(C \text{ non-methyl})$. The hydrogen atoms of the C25 methyl group of caffeine molecule are disordered over two positions with site occupation of 0.5 each.

Figure 1

The molecular structure of the title adduct with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the O—H…N hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.

3-(1,3-dioxoisoindolin-2-yl)propanoic acid- 1,3,7-trimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione (1/1)

Crystal data	
$C_8H_{10}N_4O_2 \cdot C_{11}H_9NO_4$	Z = 2
$M_r = 413.39$	F(000) = 432
Triclinic, P1	$D_{\rm x} = 1.485 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.3411 (17) Å	Cell parameters from 3614 reflections
b = 9.0638 (18) Å	$\theta = 2.6 - 28.2^{\circ}$
c = 13.162 (3) Å	$\mu = 0.11 \mathrm{~mm^{-1}}$
$\alpha = 77.105 \ (4)^{\circ}$	T = 130 K
$\beta = 82.394 \ (4)^{\circ}$	Block, colourless
$\gamma = 72.865 \ (4)^{\circ}$	$0.42 \times 0.40 \times 0.35 \text{ mm}$
$V = 924.6 (3) Å^3$	

Data collection

Bruker SMART APEX diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{\min} = 0.954$, $T_{\max} = 0.962$	8826 measured reflections 4378 independent reflections 3752 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.106$ S = 1.03 4378 reflections 277 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 0.1919P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26$ e Å ⁻³ $\Delta\rho_{min} = -0.26$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0023 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H6A	0.3006	1.2372	0.5941	0.030*	
C7	0.29048 (14)	1.04076 (14)	0.54603 (9)	0.0215 (2)	
C8	0.37667 (14)	0.90240 (14)	0.62382 (9)	0.0214 (2)	
C9	0.44832 (15)	0.61010 (14)	0.63967 (10)	0.0236 (2)	
H9A	0.5306	0.6112	0.6870	0.028*	
H9B	0.5099	0.5479	0.5866	0.028*	
C10	0.31773 (15)	0.53188 (14)	0.70237 (10)	0.0239 (3)	
H10A	0.2477	0.5993	0.7505	0.029*	
H10B	0.2431	0.5189	0.6544	0.029*	
C11	0.40448 (14)	0.37333 (14)	0.76419 (9)	0.0219 (2)	
05	0.05201 (12)	-0.05872 (12)	0.78890 (7)	0.0323 (2)	
O6	0.06764 (11)	0.39207 (10)	0.88703 (7)	0.0292 (2)	
N2	0.28028 (12)	0.17054 (11)	1.06458 (8)	0.0210 (2)	
N3	0.34827 (12)	-0.08987 (12)	1.07618 (8)	0.0211 (2)	
N4	0.19842 (12)	-0.08902 (12)	0.92895 (8)	0.0225 (2)	
N5	0.05480 (12)	0.16501 (12)	0.84150 (8)	0.0246 (2)	
C20	0.27113 (17)	0.32244 (15)	1.08893 (11)	0.0292 (3)	
H20A	0.3295	0.3056	1.1522	0.044*	
H20B	0.1530	0.3804	1.1004	0.044*	
H20C	0.3247	0.3833	1.0305	0.044*	
C21	0.36256 (14)	0.02847 (13)	1.11659 (9)	0.0214 (2)	
H21A	0.4241	0.0136	1.1756	0.026*	
C22	0.25050 (14)	-0.01704 (14)	0.99472 (9)	0.0196 (2)	
C23	0.25004 (16)	-0.26028 (15)	0.93844 (10)	0.0273 (3)	
H23A	0.3469	-0.2903	0.8890	0.041*	
H23B	0.1567	-0.2948	0.9229	0.041*	
H23C	0.2811	-0.3105	1.0098	0.041*	
C24	0.09971 (14)	0.00176 (15)	0.84884 (9)	0.0239 (3)	
C25	-0.04962 (17)	0.26056 (18)	0.75566 (10)	0.0330 (3)	
H25A	-0.0890	0.3702	0.7647	0.050*	0.50
H25B	-0.1466	0.2202	0.7562	0.050*	0.50
H25C	0.0172	0.2549	0.6888	0.050*	0.50
H25D	-0.0567	0.1933	0.7085	0.050*	0.50
H25E	0.0010	0.3434	0.7170	0.050*	0.50
H25F	-0.1628	0.3086	0.7844	0.050*	0.50
C26	0.10740 (14)	0.24778 (14)	0.90378 (9)	0.0226 (2)	
C27	0.20625 (14)	0.14314 (14)	0.98483 (9)	0.0206 (2)	
				. /	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0409 (5)	0.0297 (5)	0.0309 (5)	-0.0097 (4)	-0.0096 (4)	-0.0099 (4)
O2	0.0321 (5)	0.0264 (5)	0.0230 (4)	-0.0075 (4)	-0.0101 (4)	-0.0023 (4)
O3	0.0373 (5)	0.0201 (4)	0.0304 (5)	-0.0067 (4)	-0.0098 (4)	-0.0040 (4)
O4	0.0360 (5)	0.0177 (4)	0.0330 (5)	-0.0036 (4)	-0.0161 (4)	-0.0018 (4)
N1	0.0269 (5)	0.0189 (5)	0.0222 (5)	-0.0059 (4)	-0.0063 (4)	-0.0012 (4)
C1	0.0247 (6)	0.0257 (6)	0.0212 (6)	-0.0077 (5)	-0.0033 (4)	-0.0044 (5)
C2	0.0211 (5)	0.0241 (6)	0.0208 (6)	-0.0060 (4)	-0.0021 (4)	-0.0022 (5)

C3	0.0243 (6)	0.0344 (7)	0.0223 (6)	-0.0072 (5)	-0.0055 (5)	-0.0027 (5)
C4	0.0223 (6)	0.0315 (7)	0.0254 (6)	-0.0010 (5)	-0.0048 (5)	0.0036 (5)
C5	0.0253 (6)	0.0218 (6)	0.0309 (7)	-0.0016 (5)	-0.0005 (5)	-0.0009 (5)
C6	0.0256 (6)	0.0234 (6)	0.0247 (6)	-0.0059 (5)	-0.0026 (5)	-0.0047 (5)
C7	0.0208 (5)	0.0229 (6)	0.0189 (5)	-0.0050 (4)	-0.0022 (4)	-0.0011 (4)
C8	0.0208 (5)	0.0220 (6)	0.0210 (6)	-0.0063 (4)	-0.0023 (4)	-0.0024 (4)
C9	0.0241 (6)	0.0187 (6)	0.0259 (6)	-0.0033 (4)	-0.0048 (5)	-0.0020 (5)
C10	0.0243 (6)	0.0193 (6)	0.0270 (6)	-0.0047 (4)	-0.0064 (5)	-0.0015 (5)
C11	0.0222 (5)	0.0199 (6)	0.0230 (6)	-0.0051 (4)	-0.0032 (4)	-0.0028 (4)
O5	0.0318 (5)	0.0408 (6)	0.0277 (5)	-0.0105 (4)	-0.0103 (4)	-0.0083 (4)
O6	0.0284 (4)	0.0223 (4)	0.0298 (5)	0.0016 (3)	-0.0047 (4)	-0.0002 (4)
N2	0.0210 (5)	0.0192 (5)	0.0217 (5)	-0.0028 (4)	-0.0030 (4)	-0.0042 (4)
N3	0.0215 (5)	0.0206 (5)	0.0202 (5)	-0.0040 (4)	-0.0048 (4)	-0.0022 (4)
N4	0.0241 (5)	0.0229 (5)	0.0210 (5)	-0.0062 (4)	-0.0053 (4)	-0.0034 (4)
N5	0.0220 (5)	0.0288 (6)	0.0200 (5)	-0.0049 (4)	-0.0064 (4)	0.0009 (4)
C20	0.0344 (7)	0.0211 (6)	0.0321 (7)	-0.0029 (5)	-0.0060 (5)	-0.0094 (5)
C21	0.0206 (5)	0.0211 (6)	0.0208 (6)	-0.0031 (4)	-0.0040 (4)	-0.0028 (4)
C22	0.0179 (5)	0.0216 (6)	0.0185 (5)	-0.0052 (4)	-0.0016 (4)	-0.0024 (4)
C23	0.0314 (6)	0.0225 (6)	0.0302 (6)	-0.0069 (5)	-0.0068 (5)	-0.0075 (5)
C24	0.0202 (5)	0.0306 (6)	0.0205 (6)	-0.0067 (5)	-0.0032 (4)	-0.0036 (5)
C25	0.0287 (6)	0.0403 (8)	0.0237 (6)	-0.0041 (6)	-0.0105 (5)	0.0046 (6)
C26	0.0180 (5)	0.0243 (6)	0.0213 (6)	-0.0021 (4)	-0.0004 (4)	-0.0013 (5)
C27	0.0190 (5)	0.0208 (6)	0.0208 (6)	-0.0036 (4)	-0.0025 (4)	-0.0032 (4)

Geometric parameters (Å, °)

01—C1	1.2106 (15)	O6—C26	1.2265 (15)
O2—C8	1.2132 (14)	N2—C21	1.3446 (15)
O3—C11	1.2066 (15)	N2—C27	1.3867 (15)
O4—C11	1.3312 (14)	N2—C20	1.4604 (16)
O4—H4	0.8400	N3—C21	1.3395 (15)
N1—C8	1.3979 (16)	N3—C22	1.3597 (14)
N1-C1	1.3982 (15)	N4—C22	1.3719 (15)
N1—C9	1.4499 (15)	N4—C24	1.3820 (15)
C1—C2	1.4895 (17)	N4—C23	1.4644 (16)
C2—C3	1.3841 (16)	N5—C24	1.3994 (17)
C2—C7	1.3899 (17)	N5—C26	1.4110 (16)
C3—C4	1.3957 (19)	N5—C25	1.4712 (15)
С3—НЗА	0.9500	C20—H20A	0.9800
C4—C5	1.3910 (19)	C20—H20B	0.9800
C4—H4A	0.9500	C20—H20C	0.9800
C5—C6	1.3986 (17)	C21—H21A	0.9500
С5—Н5А	0.9500	C22—C27	1.3689 (16)
C6—C7	1.3807 (17)	C23—H23A	0.9800
С6—Н6А	0.9500	C23—H23B	0.9800
С7—С8	1.4927 (16)	C23—H23C	0.9800
C9—C10	1.5252 (17)	C25—H25A	0.9800
С9—Н9А	0.9900	C25—H25B	0.9800

С9—Н9В	0.9900	С25—Н25С	0.9800
C10—C11	1.5073 (16)	C25—H25D	0.9800
C10—H10A	0.9900	С25—Н25Е	0.9800
C10—H10B	0.9900	C25—H25F	0.9800
O5—C24	1.2190 (15)	C26—C27	1.4275 (16)
C11—O4—H4	109.5	C21—N3—C22	104.19 (10)
C8—N1—C1	112.53 (10)	C22—N4—C24	119.59 (10)
C8—N1—C9	123.16 (10)	C22—N4—C23	121.80 (10)
C1—N1—C9	124.26 (10)	C24—N4—C23	118.57 (10)
01—C1—N1	124.51 (12)	C24—N5—C26	126.81 (10)
O1—C1—C2	130.13 (11)	C24—N5—C25	116.45 (10)
N1—C1—C2	105.36 (10)	C26—N5—C25	116.62 (11)
C3—C2—C7	121.42 (12)	N2-C20-H20A	109.5
C3—C2—C1	130.01 (11)	N2-C20-H20B	109.5
C7—C2—C1	108.56 (10)	H20A—C20—H20B	109.5
C2—C3—C4	117.05 (12)	N2—C20—H20C	109.5
С2—С3—НЗА	121.5	H20A-C20-H20C	109.5
С4—С3—НЗА	121.5	H20B-C20-H20C	109.5
C5—C4—C3	121.47 (11)	N3—C21—N2	112.65 (10)
C5—C4—H4A	119.3	N3—C21—H21A	123.7
C3—C4—H4A	119.3	N2—C21—H21A	123.7
C4—C5—C6	121.12 (12)	N3—C22—C27	111.37 (10)
С4—С5—Н5А	119.4	N3—C22—N4	126.43 (11)
С6—С5—Н5А	119.4	C27—C22—N4	122.20 (10)
C7—C6—C5	116.97 (11)	N4—C23—H23A	109.5
С7—С6—Н6А	121.5	N4—C23—H23B	109.5
С5—С6—Н6А	121.5	H23A—C23—H23B	109.5
C6—C7—C2	121.96 (11)	N4—C23—H23C	109.5
C6—C7—C8	130.04 (11)	H23A—C23—H23C	109.5
C2—C7—C8	107.99 (10)	H23B—C23—H23C	109.5
O2—C8—N1	124.43 (11)	O5—C24—N4	121.12 (12)
O2—C8—C7	130.01 (11)	O5—C24—N5	121.97 (11)
N1—C8—C7	105.56 (10)	N4—C24—N5	116.90 (10)
N1-C9-C10	111.68 (10)	N5—C25—H25A	109.5
N1—C9—H9A	109.3	N5—C25—H25B	109.5
С10—С9—Н9А	109.3	H25A—C25—H25B	109.5
N1—C9—H9B	109.3	N5—C25—H25C	109.5
С10—С9—Н9В	109.3	H25A—C25—H25C	109.5
H9A—C9—H9B	107.9	H25B—C25—H25C	109.5
C11—C10—C9	109.85 (10)	N5—C25—H25D	109.5
C11—C10—H10A	109.7	N5—C25—H25E	109.5
C9—C10—H10A	109.7	H25D—C25—H25E	109.5
C11—C10—H10B	109.7	N5—C25—H25F	109.5
C9—C10—H10B	109.7	H25D—C25—H25F	109.5
H10A—C10—H10B	108.2	H25E—C25—H25F	109.5
O3—C11—O4	123.34 (11)	O6—C26—N5	121.50 (11)
O3—C11—C10	124.00 (11)	O6—C26—C27	126.91 (12)

O4—C11—C10	112.64 (10)	N5—C26—C27	111.59 (10)
C21—N2—C27	106.39 (10)	C22—C27—N2	105.40 (10)
C21—N2—C20	126.14 (10)	C22—C27—C26	122.76 (11)
C27—N2—C20	127.47 (10)	N2-C27-C26	131.82 (11)
C8—N1—C1—O1	179.26 (12)	C27—N2—C21—N3	0.32 (13)
C9—N1—C1—O1	1.75 (19)	C20-N2-C21-N3	179.91 (11)
C8—N1—C1—C2	-0.27 (13)	C21—N3—C22—C27	0.33 (13)
C9—N1—C1—C2	-177.79 (10)	C21—N3—C22—N4	-179.28 (11)
O1—C1—C2—C3	0.1 (2)	C24—N4—C22—N3	-179.58 (11)
N1—C1—C2—C3	179.57 (12)	C23—N4—C22—N3	-2.06 (18)
O1—C1—C2—C7	-178.84 (13)	C24—N4—C22—C27	0.86 (17)
N1—C1—C2—C7	0.66 (13)	C23—N4—C22—C27	178.37 (11)
C7—C2—C3—C4	0.19 (18)	C22—N4—C24—O5	179.72 (11)
C1—C2—C3—C4	-178.61 (12)	C23—N4—C24—O5	2.12 (18)
C2—C3—C4—C5	0.21 (19)	C22—N4—C24—N5	-1.58 (16)
C3—C4—C5—C6	-0.25 (19)	C23—N4—C24—N5	-179.18 (10)
C4—C5—C6—C7	-0.11 (18)	C26—N5—C24—O5	-177.48 (11)
C5—C6—C7—C2	0.51 (18)	C25—N5—C24—O5	-1.59 (17)
C5—C6—C7—C8	179.56 (12)	C26—N5—C24—N4	3.83 (18)
C3—C2—C7—C6	-0.57 (18)	C25—N5—C24—N4	179.72 (10)
C1—C2—C7—C6	178.46 (11)	C24—N5—C26—O6	175.97 (11)
C3—C2—C7—C8	-179.80 (11)	C25—N5—C26—O6	0.09 (17)
C1—C2—C7—C8	-0.77 (13)	C24—N5—C26—C27	-4.66 (16)
C1—N1—C8—O2	-179.50 (11)	C25—N5—C26—C27	179.45 (10)
C9—N1—C8—O2	-1.95 (18)	N3—C22—C27—N2	-0.15 (13)
C1—N1—C8—C7	-0.18 (13)	N4—C22—C27—N2	179.47 (10)
C9—N1—C8—C7	177.36 (10)	N3—C22—C27—C26	178.33 (10)
C6—C7—C8—O2	0.7 (2)	N4—C22—C27—C26	-2.04 (18)
C2—C7—C8—O2	179.86 (12)	C21—N2—C27—C22	-0.09 (12)
C6—C7—C8—N1	-178.55 (12)	C20—N2—C27—C22	-179.68 (11)
C2C7C8N1	0.60 (13)	C21—N2—C27—C26	-178.38 (12)
C8—N1—C9—C10	103.65 (13)	C20—N2—C27—C26	2.0 (2)
C1—N1—C9—C10	-79.09 (14)	O6—C26—C27—C22	-177.07 (11)
N1-C9-C10-C11	-173.66 (10)	N5-C26-C27-C22	3.61 (16)
C9—C10—C11—O3	-11203(13)	O6—C26—C27—N2	1.0 (2)
G0 G10 G11 01	112.05 (15)	00 020 02, 112	···· (=)
C9—C10—C11—O4	66.73 (13)	N5-C26-C27-N2	-178.35 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O4—H4…N3 ⁱ	0.84	1.83	2.6672 (13)	175
C3—H3A····O5 ⁱⁱ	0.95	2.26	3.1447 (16)	155
C6—H6A···O3 ⁱⁱⁱ	0.95	2.31	3.2283 (16)	162
C20—H20 <i>B</i> ····O6 ^{iv}	0.98	2.35	3.2559 (16)	154

		supporting	supporting information	
0.98	2.28	2.7244 (18)	107	
	0.98 0.98	0.98 2.28 0.98 2.26	0.98 2.28 2.7244 (18) 0.98 2.26 2.7152 (19)	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*; (iv) -*x*, -*y*+1, -*z*+2.