metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m830-m831

[(Pyridine-2,6-di­carboxyl­ato)copper(II)]-μ-(pyridine-2,6-di­carboxyl­ato)-[bis­­(ethyl­enedi­amine)­copper(II)]-μ-(pyridine-2,6-di­carboxyl­ato)-[(pyridine-2,6-di­carboxyl­ato)copper(II)] ethyl­enedi­amine monosolvate tetra­hydrate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Salita Sperone, 31 Contrada Papardo, 98166 Messina, Italy
*Correspondence e-mail: amir.saljooghi@yahoo.com

(Received 28 April 2012; accepted 15 May 2012; online 26 May 2012)

The title compound, [Cu3(C7H3NO4)4(C2H8N2)2]·C2H8N2·4H2O, was obtained by the reaction of copper(II) acetate dihydrate with pyridine-2,6-dicarb­oxy­lic acid (H2dipic) and ethyl­enediamine (en) in an aqueous solution. All of the CuII atoms in the trinuclear centrosymmetric title complex are six-coordinated in a distorted octa­hedral geometry with N2O4 and N4O2 environments for the outer and central CuII atoms, respectively. Various inter­actions, including numerous O—H⋯O and C—H⋯O hydrogen bonds and C—O⋯π stacking of the pyridine and carboxyl­ate groups [O⋯centroid distances = 3.669 (2) and 3.668 (2) Å] are observed in the crystal structure.

Related literature

For metal complexes formed by pyridine­dicarb­oxy­lic acids, see: Aghabozorg et al. (2006[Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62 2269-2271.]); Burdock (1996[Burdock, G. A. (1996). Encyclopedia of Food and Color Additives, Vol. 3. Boca Raton: CRC Press.]); Douki et al. (2005[Douki, T., Setlow, B. & Setlow, P. (2005). J. Photochem. Photobiol. B, 4, 591-597.]); Kazuhiro et al. (1994[Kazuhiro, Y., Noriko, Y. & Tadayasu, F. (1994). Eur. Patent No. EP0603165.]); Murakami et al. (2003)[Murakami, K., Tanemura, Y. & Yoshino, M. (2003). J. Nutr. Biochem. 14, 99-103.]; Park et al. (2007[Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360 2819-2823.]); Xie et al. (2006[Xie, J. R. H., Smitth, V. H. Jr & Allen, R. E. (2006). Chem. Phys. 322 254-268.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C7H3NO4)4(C2H8N2)2]·C2H8N2·4H2O

  • Mr = 1105.43

  • Monoclinic, P 21 /n

  • a = 8.152 (2) Å

  • b = 20.538 (5) Å

  • c = 12.736 (3) Å

  • β = 93.44 (2)°

  • V = 2128.5 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 293 K

  • 0.51 × 0.28 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007)[Bruker (2007). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.583, Tmax = 0.747

  • 35349 measured reflections

  • 9453 independent reflections

  • 6734 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.02

  • 9453 reflections

  • 336 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O1 0.84 (2) 2.07 (2) 2.8697 (17) 160 (2)
O10—H10B⋯O2 0.92 (2) 1.87 (2) 2.7927 (17) 176 (3)
N5—H5A⋯O9 0.89 1.93 2.808 (2) 167
O9—H9B⋯O5 0.88 (2) 2.50 (2) 3.211 (2) 139 (3)
O9—H9B⋯O6 0.88 (2) 1.96 (2) 2.793 (2) 159 (3)
N3—H3A⋯O6i 0.87 (2) 2.51 (2) 3.218 (2) 138.5 (18)
O9—H9A⋯O10ii 0.83 (2) 2.10 (2) 2.893 (3) 160 (3)
N5—H5B⋯O9iii 0.89 2.59 3.106 (2) 118
N5—H5B⋯O10iv 0.89 2.06 2.9151 (19) 160
N5—H5C⋯O4v 0.89 1.82 2.6882 (18) 166
N4—H4A⋯O8vi 0.843 (19) 2.482 (19) 3.2079 (19) 144.8 (17)
O10—H10A⋯O8vii 0.88 (2) 1.82 (2) 2.6824 (17) 165 (2)
N3—H3B⋯O8vii 0.80 (2) 2.31 (3) 3.0664 (19) 156 (2)
N3—H3B⋯O7vii 0.80 (2) 2.43 (2) 3.1383 (17) 147 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+2, -z+1; (vi) x-1, y, z; (vii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-2,6-dicarboxylic acid (also known as 2,6-dicarboxypyridine and as dipicolinic acid, H2dipic) is a water-soluble, commercially available, cheap and versatile N,O-chelator possessing diverse coordination modes, with a recognized biological function in the body metabolism (Douki et al., 2005),and in a variety of processes as an enzyme inhibitor (Murakami et al., 2003), plant preservative (Kazuhiro et al., 1994), and food sanitizer (Burdock, 1996),. The complexation of transition metal ions from dipicolinic acid has been the subject of numerousreports. The reasons for this interest are the ability of the ligand so it gave stable chelates with different coordination modes (Park et al., 2007), affinity to form strong hydrogen bonds and its biological activity in human metabolism (Xie et al., 2006). A lots of dipicolinate complexes of transition metals and main groups are known and reported (Xie et al., 2006; Aghabozorg et al., 2006). Here, we report the crystal structure of the title binuclear complex, [Cu3(C7H3NO4)4(C2H8N2)2].(C2H8N2).2H2O, in which the Pyridine-2,6-dicarboxylic acid (C7H3NO4) species acts as a momo and tridentate ligand. In the crystal structure, the copper atoms are in three types. All copper atoms exhibit an distorted octahedral coordination geometry. In the crystal structure, Cu (1) is coordinated by two dipicolinic acid ligands, and Cu (2) is coordinated by two ethylenediamine molecules and two uncoordinated O atoms of two dipicolinic acid groups linked to Cu (1). As shown in Fig.1, this causes that Cu (2) makes a bridge between two Cu (1) atoms. The bond distances of Cu(1)– O(1) and Cu(1)– O(3) is longer than Cu(1)–N(1), Cu(1)–N(2), Cu(1)–O(5) and Cu(1)–O(7) bond distances due to Jahn–Teller effect. Also 0.74 Å difference between Cu(2)–O and Cu(2)–N bonds, due to Jahn–Teller effect. There are extensive intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonds, which cause the stability of the crystal structure (Fig. 2).

Related literature top

For metal complexes formed by pyridinedicarboxylic acids, see: Aghabozorg et al. (2006); Burdock (1996); Douki et al. (2005); Kazuhiro et al. (1994); Murakami et al. (2003); Park et al. (2007); Xie et al. (2006).

Experimental top

To an aqueous solution of Copper(II) acetate, an aqueous solution of H2dipic and en in 1:1:1 molar ratio was added. The final volume was 30 ml. After less than 1 h stirring, the obtained blue solution was left for 3 days. Then the blue crystals of the title compound were obtained for X-ray crystallography.

Refinement top

The H atoms of the water molecules were found in difference Fourier maps and the O–H bond lengths were constrained to 0.85 Å. The H atoms from C–H groups were placed in calculated positions. All H atoms were refined in riding model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom labeling scheme for title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A packing view of the title compound. Hydrogen bonds are shown with dashed lines.
[(Pyridine-2,6-dicarboxylato)copper(II)]-µ-(pyridine-2,6-dicarboxylato)- [bis(ethylenediamine)copper(II)]-µ-(pyridine-2,6-dicarboxylato)-[(pyridine- 2,6-dicarboxylato)copper(II)] ethylenediamine monosolvate tetrahydrate top
Crystal data top
[Cu3(C7H3NO4)4(C2H8N2)2]·C2H8N2·4H2OF(000) = 1134
Mr = 1105.43Dx = 1.725 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8052 reflections
a = 8.152 (2) Åθ = 2.6–32.5°
b = 20.538 (5) ŵ = 1.58 mm1
c = 12.736 (3) ÅT = 293 K
β = 93.44 (2)°Irregular, blue
V = 2128.5 (10) Å30.51 × 0.28 × 0.12 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
9453 independent reflections
Radiation source: fine-focus sealed tube6734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 35.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1313
Tmin = 0.583, Tmax = 0.747k = 3333
35349 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1097P]
where P = (Fo2 + 2Fc2)/3
9453 reflections(Δ/σ)max = 0.003
336 parametersΔρmax = 0.48 e Å3
5 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu3(C7H3NO4)4(C2H8N2)2]·C2H8N2·4H2OV = 2128.5 (10) Å3
Mr = 1105.43Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.152 (2) ŵ = 1.58 mm1
b = 20.538 (5) ÅT = 293 K
c = 12.736 (3) Å0.51 × 0.28 × 0.12 mm
β = 93.44 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
9453 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6734 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.747Rint = 0.034
35349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0355 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.48 e Å3
9453 reflectionsΔρmin = 0.47 e Å3
336 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.41369 (2)0.734887 (8)0.553105 (12)0.02551 (5)
N10.38865 (14)0.73453 (5)0.39949 (8)0.02225 (19)
O50.26265 (15)0.81147 (5)0.60629 (9)0.0362 (2)
O30.58419 (15)0.81797 (6)0.50570 (8)0.0368 (2)
N20.44168 (14)0.72476 (5)0.70320 (8)0.02212 (19)
C20.29612 (16)0.68844 (6)0.35084 (10)0.0236 (2)
C60.46747 (16)0.77861 (6)0.34388 (10)0.0233 (2)
C90.36906 (16)0.76619 (6)0.76552 (10)0.0229 (2)
O10.21166 (16)0.65984 (5)0.51771 (8)0.0374 (3)
O20.15002 (16)0.59160 (5)0.38441 (9)0.0401 (3)
C130.53495 (16)0.67598 (6)0.74101 (10)0.0240 (2)
C100.38875 (18)0.75991 (7)0.87363 (11)0.0302 (3)
H100.33840.78890.91770.036*
O70.58610 (16)0.65866 (6)0.56406 (8)0.0401 (3)
O60.21260 (16)0.86312 (6)0.75532 (11)0.0468 (3)
C30.27609 (18)0.68619 (7)0.24224 (10)0.0270 (2)
H30.21120.65420.20890.032*
C10.21182 (18)0.64213 (6)0.42338 (11)0.0277 (3)
O40.62267 (16)0.87514 (5)0.36029 (9)0.0413 (3)
C50.45307 (18)0.77855 (7)0.23509 (10)0.0276 (3)
H50.50900.80910.19690.033*
C70.56691 (17)0.82794 (7)0.40915 (11)0.0269 (2)
C40.35429 (19)0.73235 (7)0.18424 (11)0.0296 (3)
H40.34050.73230.11120.036*
C110.48516 (19)0.70947 (9)0.91474 (11)0.0353 (3)
H110.50040.70440.98720.042*
C120.55921 (18)0.66641 (8)0.84784 (11)0.0312 (3)
H120.62340.63210.87450.037*
C80.27279 (17)0.81864 (7)0.70493 (12)0.0290 (3)
Cu20.00000.50000.50000.03467 (7)
O80.70149 (17)0.59043 (6)0.68212 (10)0.0447 (3)
C140.61377 (19)0.63770 (7)0.65613 (12)0.0297 (3)
N40.06892 (19)0.55367 (6)0.62685 (10)0.0333 (3)
N30.2066 (2)0.45052 (7)0.53830 (13)0.0394 (3)
O100.2610 (2)0.52256 (7)0.21358 (10)0.0516 (3)
C150.3169 (2)0.49316 (9)0.60259 (14)0.0394 (3)
H15A0.36410.52620.55910.047*
H15B0.40540.46810.63700.047*
C160.2137 (3)0.52425 (9)0.68297 (13)0.0442 (4)
H16A0.17950.49170.73240.053*
H16B0.27670.55740.72180.053*
N50.28169 (16)1.02440 (7)0.51530 (11)0.0352 (3)
H5A0.19861.00390.54330.053*
H5B0.25511.03310.44790.053*
H5C0.30241.06150.54980.053*
O90.0509 (2)0.94330 (9)0.60524 (16)0.0669 (5)
C170.4283 (2)0.98283 (8)0.52329 (15)0.0388 (3)
H17A0.40570.94230.48600.047*
H17B0.45620.97260.59660.047*
H4A0.003 (2)0.5641 (9)0.6683 (15)0.033 (5)*
H3A0.181 (3)0.4176 (11)0.5774 (18)0.049 (6)*
H4B0.098 (3)0.5904 (10)0.6056 (18)0.050 (6)*
H3B0.249 (3)0.4324 (11)0.491 (2)0.054 (6)*
H10A0.273 (3)0.4821 (7)0.2364 (17)0.055 (6)*
H10B0.228 (3)0.5469 (10)0.2693 (18)0.079 (8)*
H9A0.027 (3)0.9446 (15)0.645 (2)0.082 (10)*
H9B0.095 (4)0.9106 (12)0.640 (2)0.099 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03397 (10)0.02360 (8)0.01879 (7)0.00059 (6)0.00018 (6)0.00041 (6)
N10.0263 (5)0.0217 (4)0.0186 (4)0.0015 (4)0.0007 (4)0.0018 (4)
O50.0444 (6)0.0339 (5)0.0293 (5)0.0062 (5)0.0055 (4)0.0029 (4)
O30.0466 (6)0.0369 (5)0.0262 (5)0.0096 (5)0.0049 (4)0.0008 (4)
N20.0255 (5)0.0208 (4)0.0200 (4)0.0013 (4)0.0007 (4)0.0013 (4)
C20.0280 (6)0.0219 (5)0.0209 (5)0.0012 (4)0.0006 (4)0.0001 (4)
C60.0249 (6)0.0219 (5)0.0232 (5)0.0001 (4)0.0017 (4)0.0024 (4)
C90.0227 (5)0.0232 (5)0.0228 (5)0.0000 (4)0.0015 (4)0.0028 (4)
O10.0582 (7)0.0317 (5)0.0227 (4)0.0143 (5)0.0058 (5)0.0006 (4)
O20.0550 (7)0.0317 (5)0.0341 (6)0.0186 (5)0.0084 (5)0.0054 (4)
C130.0267 (6)0.0227 (5)0.0230 (5)0.0017 (5)0.0038 (5)0.0012 (4)
C100.0312 (7)0.0365 (7)0.0233 (6)0.0025 (6)0.0040 (5)0.0056 (5)
O70.0601 (8)0.0373 (6)0.0235 (5)0.0146 (5)0.0066 (5)0.0020 (4)
O60.0555 (7)0.0349 (6)0.0494 (7)0.0197 (5)0.0035 (6)0.0106 (5)
C30.0325 (7)0.0269 (6)0.0214 (5)0.0002 (5)0.0006 (5)0.0038 (5)
C10.0349 (7)0.0232 (5)0.0251 (6)0.0056 (5)0.0029 (5)0.0002 (5)
O40.0551 (7)0.0306 (5)0.0385 (6)0.0163 (5)0.0059 (5)0.0026 (5)
C50.0321 (7)0.0289 (6)0.0221 (5)0.0011 (5)0.0042 (5)0.0061 (5)
C70.0276 (6)0.0241 (5)0.0290 (6)0.0013 (5)0.0018 (5)0.0007 (5)
C40.0358 (7)0.0349 (7)0.0181 (5)0.0043 (6)0.0024 (5)0.0000 (5)
C110.0363 (8)0.0512 (9)0.0185 (5)0.0044 (7)0.0014 (5)0.0025 (6)
C120.0319 (7)0.0354 (7)0.0264 (6)0.0074 (6)0.0021 (5)0.0077 (5)
C80.0278 (6)0.0244 (6)0.0342 (7)0.0022 (5)0.0038 (5)0.0017 (5)
Cu20.03599 (14)0.03264 (13)0.03617 (14)0.00045 (10)0.00872 (11)0.01548 (11)
O80.0584 (8)0.0315 (5)0.0455 (7)0.0218 (5)0.0139 (6)0.0061 (5)
C140.0377 (7)0.0231 (5)0.0287 (6)0.0051 (5)0.0064 (5)0.0012 (5)
N40.0461 (7)0.0260 (5)0.0292 (6)0.0023 (5)0.0151 (5)0.0052 (5)
N30.0467 (8)0.0333 (7)0.0395 (7)0.0063 (6)0.0122 (6)0.0102 (6)
O100.0888 (11)0.0350 (6)0.0313 (6)0.0095 (7)0.0053 (6)0.0035 (5)
C150.0423 (9)0.0407 (8)0.0352 (8)0.0023 (7)0.0036 (7)0.0012 (7)
C160.0643 (12)0.0405 (8)0.0279 (7)0.0044 (8)0.0033 (7)0.0041 (6)
N50.0316 (6)0.0360 (6)0.0377 (7)0.0032 (5)0.0007 (5)0.0016 (5)
O90.0400 (7)0.0670 (10)0.0921 (12)0.0022 (7)0.0090 (8)0.0472 (9)
C170.0366 (8)0.0355 (7)0.0447 (9)0.0001 (6)0.0070 (7)0.0026 (7)
Geometric parameters (Å, º) top
Cu1—N21.9228 (11)C4—H40.9300
Cu1—N11.9549 (11)C11—C121.391 (2)
Cu1—O72.1030 (11)C11—H110.9300
Cu1—O52.1328 (11)C12—H120.9300
Cu1—O12.2808 (11)Cu2—N3i2.0019 (16)
Cu1—O32.3041 (11)Cu2—N32.0019 (16)
N1—C61.3375 (16)Cu2—N42.0080 (13)
N1—C21.3390 (17)Cu2—N4i2.0080 (13)
O5—C81.2626 (18)O8—C141.2389 (17)
O3—C71.2461 (18)N4—C161.473 (2)
N2—C91.3271 (16)N4—H4A0.843 (19)
N2—C131.3303 (16)N4—H4B0.84 (2)
C2—C31.3837 (18)N3—C151.469 (2)
C2—C11.5188 (18)N3—H3A0.87 (2)
C6—C51.3834 (18)N3—H3B0.80 (2)
C6—C71.5146 (19)O10—H10A0.883 (15)
C9—C101.3826 (19)O10—H10B0.921 (16)
C9—C81.5162 (19)C15—C161.505 (2)
O1—C11.2553 (17)C15—H15A0.9700
O2—C11.2439 (17)C15—H15B0.9700
C13—C121.3772 (19)C16—H16A0.9700
C13—C141.5109 (18)C16—H16B0.9700
C10—C111.384 (2)N5—C171.467 (2)
C10—H100.9300N5—H5A0.8900
O7—C141.2567 (18)N5—H5B0.8900
O6—C81.2350 (18)N5—H5C0.8900
C3—C41.381 (2)O9—H9A0.831 (17)
C3—H30.9300O9—H9B0.875 (17)
O4—C71.2520 (17)C17—C17ii1.516 (3)
C5—C41.380 (2)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
N2—Cu1—N1173.52 (4)C10—C11—H11119.9
N2—Cu1—O779.31 (4)C12—C11—H11119.9
N1—Cu1—O795.33 (4)C13—C12—C11118.20 (13)
N2—Cu1—O578.49 (4)C13—C12—H12120.9
N1—Cu1—O5107.04 (4)C11—C12—H12120.9
O7—Cu1—O5157.55 (4)O6—C8—O5126.80 (14)
N2—Cu1—O199.47 (4)O6—C8—C9118.08 (13)
N1—Cu1—O176.64 (4)O5—C8—C9115.12 (12)
O7—Cu1—O188.96 (5)N3i—Cu2—N3180.0
O5—Cu1—O197.89 (5)N3i—Cu2—N496.20 (6)
N2—Cu1—O3107.65 (4)N3—Cu2—N483.80 (6)
N1—Cu1—O376.64 (4)N3i—Cu2—N4i83.80 (6)
O7—Cu1—O399.06 (5)N3—Cu2—N4i96.20 (6)
O5—Cu1—O384.60 (5)N4—Cu2—N4i180.00 (6)
O1—Cu1—O3152.68 (4)O8—C14—O7125.87 (13)
C6—N1—C2120.58 (11)O8—C14—C13118.69 (13)
C6—N1—Cu1120.18 (9)O7—C14—C13115.42 (12)
C2—N1—Cu1119.20 (8)C16—N4—Cu2110.04 (10)
C8—O5—Cu1113.42 (9)C16—N4—H4A111.8 (13)
C7—O3—Cu1110.25 (9)Cu2—N4—H4A118.2 (13)
C9—N2—C13122.16 (11)C16—N4—H4B106.9 (15)
C9—N2—Cu1119.64 (9)Cu2—N4—H4B107.7 (16)
C13—N2—Cu1118.20 (8)H4A—N4—H4B101.2 (19)
N1—C2—C3121.04 (12)C15—N3—Cu2108.13 (10)
N1—C2—C1115.09 (11)C15—N3—H3A107.5 (15)
C3—C2—C1123.82 (12)Cu2—N3—H3A108.0 (14)
N1—C6—C5121.00 (12)C15—N3—H3B114.6 (17)
N1—C6—C7114.86 (11)Cu2—N3—H3B116.4 (17)
C5—C6—C7124.12 (12)H3A—N3—H3B101 (2)
N2—C9—C10120.42 (12)H10A—O10—H10B106.7 (17)
N2—C9—C8112.77 (11)N3—C15—C16106.47 (15)
C10—C9—C8126.78 (12)N3—C15—H15A110.4
C1—O1—Cu1110.04 (9)C16—C15—H15A110.4
N2—C13—C12120.68 (12)N3—C15—H15B110.4
N2—C13—C14113.03 (11)C16—C15—H15B110.4
C12—C13—C14126.20 (12)H15A—C15—H15B108.6
C9—C10—C11118.42 (12)N4—C16—C15107.96 (13)
C9—C10—H10120.8N4—C16—H16A110.1
C11—C10—H10120.8C15—C16—H16A110.1
C14—O7—Cu1113.50 (9)N4—C16—H16B110.1
C4—C3—C2118.76 (13)C15—C16—H16B110.1
C4—C3—H3120.6H16A—C16—H16B108.4
C2—C3—H3120.6C17—N5—H5A109.5
O2—C1—O1126.87 (13)C17—N5—H5B109.5
O2—C1—C2117.84 (12)H5A—N5—H5B109.5
O1—C1—C2115.30 (11)C17—N5—H5C109.5
C4—C5—C6118.86 (12)H5A—N5—H5C109.5
C4—C5—H5120.6H5B—N5—H5C109.5
C6—C5—H5120.6H9A—O9—H9B91 (3)
O3—C7—O4126.50 (14)N5—C17—C17ii110.25 (17)
O3—C7—C6117.18 (12)N5—C17—H17A109.6
O4—C7—C6116.32 (13)C17ii—C17—H17A109.6
C5—C4—C3119.72 (12)N5—C17—H17B109.6
C5—C4—H4120.1C17ii—C17—H17B109.6
C3—C4—H4120.1H17A—C17—H17B108.1
C10—C11—C12120.11 (13)
O7—Cu1—N1—C6100.17 (11)C8—C9—C10—C11178.36 (14)
O5—Cu1—N1—C677.88 (11)N2—Cu1—O7—C146.88 (11)
O1—Cu1—N1—C6172.17 (11)N1—Cu1—O7—C14169.43 (11)
O3—Cu1—N1—C62.10 (10)O5—Cu1—O7—C1415.4 (2)
O7—Cu1—N1—C277.69 (10)O1—Cu1—O7—C1492.96 (12)
O5—Cu1—N1—C2104.25 (10)O3—Cu1—O7—C14113.29 (12)
O1—Cu1—N1—C29.96 (10)N1—C2—C3—C40.3 (2)
O3—Cu1—N1—C2175.77 (11)C1—C2—C3—C4177.64 (13)
N2—Cu1—O5—C86.16 (10)Cu1—O1—C1—O2160.26 (14)
N1—Cu1—O5—C8177.35 (10)Cu1—O1—C1—C220.20 (16)
O7—Cu1—O5—C82.43 (19)N1—C2—C1—O2166.87 (13)
O1—Cu1—O5—C8104.28 (11)C3—C2—C1—O215.7 (2)
O3—Cu1—O5—C8103.11 (11)N1—C2—C1—O113.55 (19)
N2—Cu1—O3—C7177.91 (10)C3—C2—C1—O1163.89 (14)
N1—Cu1—O3—C77.14 (10)N1—C6—C5—C40.6 (2)
O7—Cu1—O3—C7100.50 (10)C7—C6—C5—C4177.81 (13)
O5—Cu1—O3—C7101.83 (10)Cu1—O3—C7—O4169.07 (13)
O1—Cu1—O3—C75.07 (16)Cu1—O3—C7—C610.36 (15)
O7—Cu1—N2—C9174.33 (11)N1—C6—C7—O39.37 (19)
O5—Cu1—N2—C92.34 (10)C5—C6—C7—O3172.16 (14)
O1—Cu1—N2—C998.55 (10)N1—C6—C7—O4170.12 (13)
O3—Cu1—N2—C978.13 (11)C5—C6—C7—O48.4 (2)
O7—Cu1—N2—C135.37 (10)C6—C5—C4—C31.9 (2)
O5—Cu1—N2—C13177.95 (11)C2—C3—C4—C51.5 (2)
O1—Cu1—N2—C1381.74 (10)C9—C10—C11—C120.2 (2)
O3—Cu1—N2—C13101.58 (10)N2—C13—C12—C110.7 (2)
C6—N1—C2—C31.7 (2)C14—C13—C12—C11175.45 (14)
Cu1—N1—C2—C3179.57 (10)C10—C11—C12—C130.6 (2)
C6—N1—C2—C1179.23 (12)Cu1—O5—C8—O6171.92 (14)
Cu1—N1—C2—C12.91 (15)Cu1—O5—C8—C98.36 (16)
C2—N1—C6—C51.2 (2)N2—C9—C8—O6173.61 (13)
Cu1—N1—C6—C5179.08 (10)C10—C9—C8—O64.7 (2)
C2—N1—C6—C7179.77 (11)N2—C9—C8—O56.65 (18)
Cu1—N1—C6—C72.39 (15)C10—C9—C8—O5175.07 (14)
C13—N2—C9—C100.1 (2)Cu1—O7—C14—O8174.91 (13)
Cu1—N2—C9—C10179.56 (10)Cu1—O7—C14—C136.97 (17)
C13—N2—C9—C8178.54 (11)N2—C13—C14—O8178.92 (13)
Cu1—N2—C9—C81.15 (15)C12—C13—C14—O84.7 (2)
N2—Cu1—O1—C1157.62 (10)N2—C13—C14—O72.82 (19)
N1—Cu1—O1—C117.09 (10)C12—C13—C14—O7173.59 (15)
O7—Cu1—O1—C178.64 (11)N3i—Cu2—N4—C16173.36 (12)
O5—Cu1—O1—C1122.82 (10)N3—Cu2—N4—C166.64 (12)
O3—Cu1—O1—C129.29 (16)N4—Cu2—N3—C1522.24 (11)
C9—N2—C13—C120.3 (2)N4i—Cu2—N3—C15157.76 (11)
Cu1—N2—C13—C12179.98 (11)Cu2—N3—C15—C1645.93 (16)
C9—N2—C13—C14176.31 (12)Cu2—N4—C16—C1533.54 (17)
Cu1—N2—C13—C143.39 (15)N3—C15—C16—N452.17 (18)
N2—C9—C10—C110.2 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O10.84 (2)2.07 (2)2.8697 (17)160 (2)
O10—H10B···O20.92 (2)1.87 (2)2.7927 (17)176 (3)
N5—H5A···O90.891.932.808 (2)167
O9—H9B···O50.88 (2)2.50 (2)3.211 (2)139 (3)
O9—H9B···O60.88 (2)1.96 (2)2.793 (2)159 (3)
N3—H3A···O6iii0.87 (2)2.51 (2)3.218 (2)138.5 (18)
O9—H9A···O10iv0.83 (2)2.10 (2)2.893 (3)160 (3)
N5—H5B···O9v0.892.593.106 (2)118
N5—H5B···O10vi0.892.062.9151 (19)160
N5—H5C···O4ii0.891.822.6882 (18)166
N4—H4A···O8vii0.843 (19)2.482 (19)3.2079 (19)144.8 (17)
O10—H10A···O8viii0.88 (2)1.82 (2)2.6824 (17)165 (2)
N3—H3B···O8viii0.80 (2)2.31 (3)3.0664 (19)156 (2)
N3—H3B···O7viii0.80 (2)2.43 (2)3.1383 (17)147 (2)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1/2, y1/2, z+3/2; (iv) x1/2, y+3/2, z+1/2; (v) x, y+2, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x1, y, z; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu3(C7H3NO4)4(C2H8N2)2]·C2H8N2·4H2O
Mr1105.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.152 (2), 20.538 (5), 12.736 (3)
β (°) 93.44 (2)
V3)2128.5 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.51 × 0.28 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.583, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
35349, 9453, 6734
Rint0.034
(sin θ/λ)max1)0.810
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.02
No. of reflections9453
No. of parameters336
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O10.84 (2)2.07 (2)2.8697 (17)160 (2)
O10—H10B···O20.921 (16)1.874 (16)2.7927 (17)176 (3)
N5—H5A···O90.891.932.808 (2)167.4
O9—H9B···O50.875 (17)2.50 (2)3.211 (2)139 (3)
O9—H9B···O60.875 (17)1.96 (2)2.793 (2)159 (3)
N3—H3A···O6i0.87 (2)2.51 (2)3.218 (2)138.5 (18)
O9—H9A···O10ii0.831 (17)2.10 (2)2.893 (3)160 (3)
N5—H5B···O9iii0.892.593.106 (2)117.7
N5—H5B···O10iv0.892.062.9151 (19)159.5
N5—H5C···O4v0.891.822.6882 (18)166.3
N4—H4A···O8vi0.843 (19)2.482 (19)3.2079 (19)144.8 (17)
O10—H10A···O8vii0.883 (15)1.821 (16)2.6824 (17)165 (2)
N3—H3B···O8vii0.80 (2)2.31 (3)3.0664 (19)156 (2)
N3—H3B···O7vii0.80 (2)2.43 (2)3.1383 (17)147 (2)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z+1/2; (iii) x, y+2, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x+1, y+1, z+1.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62 2269–2271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurdock, G. A. (1996). Encyclopedia of Food and Color Additives, Vol. 3. Boca Raton: CRC Press.  Google Scholar
First citationDouki, T., Setlow, B. & Setlow, P. (2005). J. Photochem. Photobiol. B, 4, 591–597.  CrossRef CAS Google Scholar
First citationKazuhiro, Y., Noriko, Y. & Tadayasu, F. (1994). Eur. Patent No. EP0603165.  Google Scholar
First citationMurakami, K., Tanemura, Y. & Yoshino, M. (2003). J. Nutr. Biochem. 14, 99–103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360 2819–2823.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J. R. H., Smitth, V. H. Jr & Allen, R. E. (2006). Chem. Phys. 322 254–268.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m830-m831
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds