organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Nitro-N-[(pyrrolidin-1-yl)carbo­thioyl]benzamide

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: bohari@pkrisc.cc.ukm.my

(Received 23 April 2012; accepted 10 May 2012; online 19 May 2012)

In the mol­ecule of the title compound, C12H13N3O3S, the pyrrolidine ring adopts a half-chair conformation and the dihedral angle formed by the nitro group with the benzene ring is 15.18 (18)°. In the crystal, mol­ecules are linked by N—H⋯S and C—H⋯O inter­molecular hydrogen bonds into chains parallel to the c axis.

Related literature

For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Emen et al. (2003[Emen, F. M., Flörke, U., Külcü, N. & Arslan, H. (2003). Acta Cryst. E59, o1159-o1160.]); Kayhan et al. (2003[Kayhan, E., Flörke, U., Külcü, N. & Arslan, H. (2003). Acta Cryst. E59, o1237-o1238.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N3O3S

  • Mr = 279.31

  • Monoclinic, P 21 /c

  • a = 11.331 (3) Å

  • b = 13.543 (3) Å

  • c = 8.5982 (19) Å

  • β = 97.168 (5)°

  • V = 1309.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.28 × 0.22 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.977

  • 7272 measured reflections

  • 2288 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.08

  • 2288 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 (2) 2.55 (2) 3.406 (3) 173
C1—H1⋯O3ii 0.93 2.48 3.169 (3) 131
C9—H9A⋯O3ii 0.97 2.32 3.274 (4) 167
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The rapid increase in the number of syntheses of thiourea derivatives is driven by their applications in various fields including biology, pharmacy and materials for devices. The title compound is a thiourea derivative analogue to N'-(4-chlorobenzoyl)-N-(pyrrolidin-1-yl)thiourea (Kayhan et al., 2003) and N'-(2-chlorobenzoyl)-N-(pyrrolidin-1-yl) (Emen et al., 2003), except for the nitro substituent attached at 3-position of the benzene ring (Fig. 1). The molecule maintains a twisted conformation, but the C8-N2-C7-O3 torsion angle of 1.6 (4)° is a little larger than that found in N'-(2-chlorobenzoyl)-N-(pyrrolidin-1-yl)thiourea (0.42 (4)°). The C7-N2-C8-N3 torsion angle of 57.9 (4)° is comparable. The pyrrolidine ring adopts a half chair conformation. The bond lengths (Allen et al., 1987) and angles are in normal ranges. In the crystal structure, the molecules are linked by N2–H2···S1, C1–H1···O3 and C9–H9A···O3 intermolecular hydrogen bonds (Table 1) to form chains parallel to the c axis (Fig. 2).

Related literature top

For standard bond-length data, see: Allen et al. (1987). For related structures, see: Emen et al. (2003); Kayhan et al. (2003).

Experimental top

An ethanolic solution (10 ml) of 3-nitrobenzoyl isothiocyanate (0.416 g, 2 mmol) was added into a beaker containing pyrrolidine (0.007 g, 1 mmol) in 10 ml ethanol. The solution was refluxed for about 1 hour and left to evaporate at room temperature. Some colourless crsytals were obtained after 3 days on slow evaporation of the solvent. M. p.: 395.3-396.5 K.

Refinement top

The imino hydrogen atom was located in a difference Fourier map and refined isotropically with the N—H distance restrained to be 0.87 (1) Å. All other H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms, with C-H = 0.93-0.97Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down a axis. Dashed lines denote hydrogen bonds.
3-Nitro-N-[(pyrrolidin-1-yl)carbothioyl]benzamide top
Crystal data top
C12H13N3O3SF(000) = 584
Mr = 279.31Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2210 reflections
a = 11.331 (3) Åθ = 1.8–25.0°
b = 13.543 (3) ŵ = 0.26 mm1
c = 8.5982 (19) ÅT = 298 K
β = 97.168 (5)°Slab, colourless
V = 1309.2 (5) Å30.28 × 0.22 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2288 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scanh = 1213
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1516
Tmin = 0.932, Tmax = 0.977l = 1010
7272 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.063P)2 + 0.5394P]
where P = (Fo2 + 2Fc2)/3
2288 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C12H13N3O3SV = 1309.2 (5) Å3
Mr = 279.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.331 (3) ŵ = 0.26 mm1
b = 13.543 (3) ÅT = 298 K
c = 8.5982 (19) Å0.28 × 0.22 × 0.09 mm
β = 97.168 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2288 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1853 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.977Rint = 0.031
7272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.29 e Å3
2288 reflectionsΔρmin = 0.18 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14867 (6)0.55605 (5)0.11047 (10)0.0524 (3)
O10.3720 (3)0.6242 (2)0.2597 (4)0.0925 (9)
O20.5564 (3)0.6408 (2)0.1749 (5)0.1230 (13)
O30.14150 (17)0.70007 (17)0.3446 (2)0.0596 (6)
N10.4525 (3)0.6311 (2)0.1531 (5)0.0767 (9)
N20.06689 (18)0.63530 (16)0.1098 (3)0.0406 (5)
H20.081 (2)0.5858 (13)0.052 (2)0.033 (7)*
N30.08644 (18)0.74365 (16)0.1437 (3)0.0438 (6)
C10.3068 (2)0.64030 (18)0.0326 (3)0.0441 (6)
H10.24730.64920.05090.053*
C20.4242 (3)0.6275 (2)0.0067 (4)0.0548 (8)
C30.5143 (3)0.6127 (2)0.1286 (6)0.0714 (11)
H30.59260.60470.10900.086*
C40.4858 (3)0.6101 (3)0.2790 (5)0.0748 (11)
H40.54500.59840.36210.090*
C50.3705 (3)0.6245 (2)0.3079 (4)0.0590 (8)
H50.35250.62420.41050.071*
C60.2803 (2)0.63954 (18)0.1845 (3)0.0424 (6)
C70.1583 (2)0.6614 (2)0.2225 (3)0.0425 (6)
C80.0541 (2)0.6519 (2)0.1237 (3)0.0395 (6)
C90.0126 (3)0.8336 (2)0.1380 (4)0.0558 (8)
H9A0.04420.82610.06320.067*
H9B0.03000.84850.24030.067*
C100.1021 (3)0.9124 (2)0.0867 (4)0.0656 (9)
H10A0.11850.91470.02670.079*
H10B0.07380.97660.12490.079*
C110.2110 (3)0.8824 (2)0.1583 (5)0.0689 (9)
H11A0.28220.90900.09860.083*
H11B0.20660.90570.26560.083*
C120.2117 (2)0.7707 (2)0.1528 (4)0.0538 (8)
H12A0.23890.74340.24640.065*
H12B0.26290.74700.06160.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0347 (4)0.0467 (4)0.0771 (5)0.0080 (3)0.0118 (3)0.0127 (4)
O10.106 (2)0.100 (2)0.0814 (19)0.0194 (18)0.0502 (17)0.0123 (16)
O20.0760 (19)0.122 (3)0.189 (3)0.0111 (17)0.087 (2)0.025 (2)
O30.0555 (13)0.0768 (15)0.0467 (12)0.0099 (10)0.0069 (9)0.0160 (11)
N10.071 (2)0.0548 (18)0.114 (3)0.0126 (15)0.049 (2)0.0172 (18)
N20.0311 (11)0.0445 (13)0.0471 (13)0.0040 (9)0.0085 (9)0.0134 (10)
N30.0360 (12)0.0451 (14)0.0528 (14)0.0040 (9)0.0145 (10)0.0083 (10)
C10.0323 (14)0.0362 (15)0.0641 (18)0.0005 (10)0.0063 (12)0.0047 (12)
C20.0433 (16)0.0350 (15)0.089 (2)0.0002 (12)0.0211 (16)0.0048 (14)
C30.0308 (16)0.0484 (19)0.133 (4)0.0002 (13)0.0038 (19)0.002 (2)
C40.0444 (19)0.064 (2)0.107 (3)0.0044 (15)0.024 (2)0.006 (2)
C50.0539 (19)0.0505 (18)0.068 (2)0.0036 (14)0.0102 (15)0.0012 (15)
C60.0342 (14)0.0356 (14)0.0564 (17)0.0062 (10)0.0016 (12)0.0010 (12)
C70.0398 (15)0.0446 (15)0.0429 (15)0.0078 (11)0.0043 (12)0.0012 (12)
C80.0352 (13)0.0474 (16)0.0371 (13)0.0036 (11)0.0091 (11)0.0051 (11)
C90.0541 (17)0.0458 (17)0.072 (2)0.0091 (14)0.0265 (15)0.0099 (14)
C100.073 (2)0.0493 (19)0.077 (2)0.0027 (16)0.0178 (18)0.0002 (16)
C110.065 (2)0.056 (2)0.089 (2)0.0099 (16)0.0211 (19)0.0054 (17)
C120.0409 (16)0.0567 (19)0.0661 (19)0.0028 (13)0.0155 (14)0.0051 (14)
Geometric parameters (Å, º) top
S1—C81.678 (3)C4—C51.374 (5)
O1—N11.213 (4)C4—H40.9300
O2—N11.222 (4)C5—C61.393 (4)
O3—C71.209 (3)C5—H50.9300
N1—C21.450 (5)C6—C71.489 (4)
N2—C71.374 (3)C9—C101.499 (4)
N2—C81.409 (3)C9—H9A0.9700
N2—H20.863 (10)C9—H9B0.9700
N3—C81.313 (3)C10—C111.503 (5)
N3—C121.477 (3)C10—H10A0.9700
N3—C91.482 (3)C10—H10B0.9700
C1—C61.377 (4)C11—C121.513 (4)
C1—C21.386 (4)C11—H11A0.9700
C1—H10.9300C11—H11B0.9700
C2—C31.384 (5)C12—H12A0.9700
C3—C41.372 (5)C12—H12B0.9700
C3—H30.9300
O1—N1—O2122.7 (4)N2—C7—C6115.7 (2)
O1—N1—C2118.6 (3)N3—C8—N2116.9 (2)
O2—N1—C2118.7 (4)N3—C8—S1123.67 (19)
C7—N2—C8123.7 (2)N2—C8—S1119.4 (2)
C7—N2—H2115.4 (16)N3—C9—C10103.3 (2)
C8—N2—H2115.3 (16)N3—C9—H9A111.1
C8—N3—C12121.9 (2)C10—C9—H9A111.1
C8—N3—C9127.3 (2)N3—C9—H9B111.1
C12—N3—C9110.3 (2)C10—C9—H9B111.1
C6—C1—C2118.6 (3)H9A—C9—H9B109.1
C6—C1—H1120.7C9—C10—C11104.3 (3)
C2—C1—H1120.7C9—C10—H10A110.9
C3—C2—C1121.9 (3)C11—C10—H10A110.9
C3—C2—N1119.5 (3)C9—C10—H10B110.9
C1—C2—N1118.6 (3)C11—C10—H10B110.9
C4—C3—C2118.7 (3)H10A—C10—H10B108.9
C4—C3—H3120.7C10—C11—C12105.0 (2)
C2—C3—H3120.7C10—C11—H11A110.8
C3—C4—C5120.5 (3)C12—C11—H11A110.8
C3—C4—H4119.8C10—C11—H11B110.8
C5—C4—H4119.8C12—C11—H11B110.8
C4—C5—C6120.5 (3)H11A—C11—H11B108.8
C4—C5—H5119.8N3—C12—C11104.4 (2)
C6—C5—H5119.8N3—C12—H12A110.9
C1—C6—C5119.8 (3)C11—C12—H12A110.9
C1—C6—C7121.7 (2)N3—C12—H12B110.9
C5—C6—C7118.4 (3)C11—C12—H12B110.9
O3—C7—N2122.5 (2)H12A—C12—H12B108.9
O3—C7—C6121.8 (2)
C6—C1—C2—C30.9 (4)C5—C6—C7—O326.7 (4)
C6—C1—C2—N1178.3 (2)C1—C6—C7—N230.6 (4)
O1—N1—C2—C3165.5 (3)C5—C6—C7—N2153.7 (2)
O2—N1—C2—C314.5 (4)C12—N3—C8—N2177.3 (2)
O1—N1—C2—C115.3 (4)C9—N3—C8—N26.5 (4)
O2—N1—C2—C1164.7 (3)C12—N3—C8—S11.5 (4)
C1—C2—C3—C40.5 (5)C9—N3—C8—S1172.2 (2)
N1—C2—C3—C4179.7 (3)C7—N2—C8—N358.4 (4)
C2—C3—C4—C51.7 (5)C7—N2—C8—S1122.9 (2)
C3—C4—C5—C61.6 (5)C8—N3—C9—C10152.1 (3)
C2—C1—C6—C51.0 (4)C12—N3—C9—C1019.5 (3)
C2—C1—C6—C7174.7 (2)N3—C9—C10—C1133.2 (3)
C4—C5—C6—C10.2 (4)C9—C10—C11—C1235.2 (4)
C4—C5—C6—C7176.1 (3)C8—N3—C12—C11174.1 (3)
C8—N2—C7—O30.9 (4)C9—N3—C12—C112.0 (3)
C8—N2—C7—C6178.8 (2)C10—C11—C12—N322.8 (4)
C1—C6—C7—O3149.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.86 (2)2.55 (2)3.406 (3)173
C1—H1···O3ii0.932.483.169 (3)131
C9—H9A···O3ii0.972.323.274 (4)167
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H13N3O3S
Mr279.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.331 (3), 13.543 (3), 8.5982 (19)
β (°) 97.168 (5)
V3)1309.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.28 × 0.22 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7272, 2288, 1853
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.08
No. of reflections2288
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.861 (18)2.549 (18)3.406 (3)173
C1—H1···O3ii0.932.483.169 (3)131
C9—H9A···O3ii0.972.323.274 (4)167
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant No. UKM-GUP-NBT-68-27-110.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEmen, F. M., Flörke, U., Külcü, N. & Arslan, H. (2003). Acta Cryst. E59, o1159–o1160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKayhan, E., Flörke, U., Külcü, N. & Arslan, H. (2003). Acta Cryst. E59, o1237–o1238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds