organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-N-Phenyl-tert-butane­sulfinamide

aInstitute of Green Catalysis and Synthesis, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China, and bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: qinglezeng@hotmail.com

(Received 24 April 2012; accepted 7 May 2012; online 16 May 2012)

The asymmetric unit of the title compound, C10H15NOS, contains two independent mol­ecules with similar conformations. In the crystal, mol­ecules are linked in a head-to-tail fashion by N—H⋯O hydrogen bonds into chains running along the b axis. The absolute configuration was assigned on the basis of known chirality of the parent compound.

Related literature

For the structures of related N-alkyl and N-aryl alkanesulf­in­amides, see: Datta et al. (2008[Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.], 2009a[Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009a). Acta Cryst. E65, o2823.],b[Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009b). Acta Cryst. E65, o2034.], 2010[Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2010). Acta Cryst. E66, o109.]); Sun et al. (2012a[Sun, X., Dai, C., Tu, X., Wang, W. & Zeng, Q. (2012a). Acta Cryst. E68, o773.],b[Sun, X. F., Tu, X. Z., Dai, C., Zhang, X. P., Zhang, B. B. & Zeng, Q. L. (2012b). J. Org. Chem. 77, 4454-4459.]) Zhang et al. (2012[Zhang, B., Wang, Y., Sun, X., Wang, W. & Zeng, Q. (2012). Acta Cryst. E68, o1389.]); Sato et al. (1975[Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385-1392.]); Schuckmann et al. (1978[Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516-1520.]); Ferreira et al. (2005[Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269-5278.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NOS

  • Mr = 197.29

  • Orthorhombic, P 21 21 21

  • a = 9.3596 (4) Å

  • b = 10.4702 (4) Å

  • c = 22.7438 (10) Å

  • V = 2228.82 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.38 × 0.32 × 0.30 mm

Data collection
  • Aglenet Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.987, Tmax = 1.000

  • 6065 measured reflections

  • 3993 independent reflections

  • 2503 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.090

  • S = 0.98

  • 3993 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1390 Friedel pairs

  • Flack parameter: −0.09 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.80 (3) 2.17 (3) 2.937 (4) 161 (3)
N2—H2⋯O1ii 0.83 (2) 2.11 (2) 2.914 (4) 166 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{5\over 2}}, -z]; (ii) [-x-{\script{1\over 2}}, -y-2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In recent years, sulfonamide moieties have played an increasingly important role in organic chemistry, particularly due to their use as chiral auxiliaries or precursors for the synthesis of a broad family of pharmaceutical agents. As a contribution to this research field, the X-ray crystallographic study of the title compound (Fig. 1) is reported herein. A number of related (R)—N-(3-methoxyphenyl) tert-butanesulfinamides, (R)—N-(4-biphenyl) tert-butanesulfinamide, N-aryl alkanesulfinamides and N-alkyl alkanesulfinamides have been reported recently (Datta et al., 2008, 2009a, 2009b, 2010; Sun et al., 2012a, 2012b Zhang et al., 2012; Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005).

In the title compound, the value of the N-C(aryl) bond (N1—C1 = 1.403 (4) Å; N2—C11 = 1.403 (4) Å) is considerably shorter than those typically found in N-alkylsulfinamides (1.470–1.530 Å; Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005), suggesting a significant delocalization of electrons over the nitrogen atom and the benzene ring. In the crystal structure, the molecules are linked into chains parallel to the b axis by intermolecular N—H···O hydrogen bonds (Fig. 2; Table 1).

Related literature top

For the structures of related N-alkyl and N-aryl alkanesulfinamides, see: Datta et al. (2008, 2009a,b, 2010); Sun et al. (2012a,b) Zhang et al. (2012); Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005).

Experimental top

A oven-dried ground test tube, which was equipped with a magnetic stir bar and fitted with a rubber septum, was charged with (S)-tert-butanesulfinamide (0.121 g, 1.0 mmol), Pd2(dba)3 (0.018 g, 0.02 mmol), tBu-XPhos (0.0212 g, 0.05 mmol) and NaOH (0.08 g, 2 mmol). The vessel was evacuated and backfilled with argon (this process was repeated a total of 3 times) and then phenyl bromide (1.3 mmol), toluene (10 ml) and degassed water (0.3 ml) were added via syringe. The solution was stirred at 90° for 20 h. The reaction mixture was then cooled to room temperature, quenched by water, and extracted with ethyl acetate (2 × 20 ml). The organic layer was combined, dried over anhydrous sodium sulfate and filtrated. The filterate was condensed under vacuum. The residual was purified with silica gel column chromatography with a solution of petroleum ether/ethyl acetate (5:1 v/v) as an eluent to give a white solid (0.167 g, yield 86%). A test tube containing the eluate (petroleum ether/ethyl acetate (5:1 v/v) was covered with a piece of filter paper and placed motionless at room temperature (about 20°), until a single-crystal was cultured in the bottom of the test tube. M.p.: 383–386 K. [α]D21 = +179 (c 3/4, ethyl acetate). Spectroscopic analysis: 1H NMR (300 MHz, CDCl3), δ (p.p.m.): 7.25–7.24 (m, 2H), 7.01 (t, J = 6.3 Hz, 3H), 5.41 (d, J = 11.1 Hz, 1H), 1.33 (s, 9H). 13C NMR (75 MHz, CDCl3), δ (p.p.m.): 142.1, 129.1, 122.4, 117.9, 56.3, 22.3. IR (KBr), ν (cm-1): 3452, 3145, 2961, 2889, 1598, 1495, 1412, 1363, 1287, 1236, 1053, 887, 751. ESI-MS (negative mode), m/z = 196 [M—H]-.

Refinement top

The N-bound H atoms were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms. The absolute configuration was assigned on the basis of known chirality of the parent (S)-tert-butanesulfinamide compound.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The one-dimensional structure of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
(S)-N-Phenyl-tert-butanesulfinamide top
Crystal data top
C10H15NOSDx = 1.176 Mg m3
Mr = 197.29Melting point = 383–386 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
a = 9.3596 (4) ÅCell parameters from 1915 reflections
b = 10.4702 (4) Åθ = 3.1–29.1°
c = 22.7438 (10) ŵ = 0.25 mm1
V = 2228.82 (17) Å3T = 293 K
Z = 8Block, colourless
F(000) = 8480.38 × 0.32 × 0.30 mm
Data collection top
Aglenet Xcalibur Eos
diffractometer
3993 independent reflections
Radiation source: Enhance (Mo) X-ray Source2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 118
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1310
Tmin = 0.987, Tmax = 1.000l = 1628
6065 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0271P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3993 reflectionsΔρmax = 0.26 e Å3
249 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 1390 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (9)
Crystal data top
C10H15NOSV = 2228.82 (17) Å3
Mr = 197.29Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.3596 (4) ŵ = 0.25 mm1
b = 10.4702 (4) ÅT = 293 K
c = 22.7438 (10) Å0.38 × 0.32 × 0.30 mm
Data collection top
Aglenet Xcalibur Eos
diffractometer
3993 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2503 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 1.000Rint = 0.025
6065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.26 e Å3
S = 0.98Δρmin = 0.26 e Å3
3993 reflectionsAbsolute structure: Flack (1983), 1390 Friedel pairs
249 parametersAbsolute structure parameter: 0.09 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63522 (11)0.88887 (8)0.08184 (4)0.0658 (3)
S20.04812 (9)1.49605 (8)0.25283 (4)0.0596 (2)
O10.6196 (3)0.7833 (2)0.12453 (11)0.0943 (9)
O20.0446 (3)1.3883 (2)0.20975 (9)0.0730 (7)
N10.5152 (4)0.9991 (3)0.09407 (14)0.0781 (10)
H10.517 (3)1.037 (2)0.1245 (12)0.051 (11)*
N20.0029 (4)1.4435 (3)0.31882 (13)0.0702 (10)
H20.042 (3)1.376 (2)0.3290 (11)0.038 (9)*
C10.3963 (4)1.0169 (3)0.05740 (14)0.0567 (9)
C20.3226 (4)1.1295 (3)0.06151 (15)0.0697 (11)
H2A0.35071.19100.08870.084*
C30.2065 (5)1.1521 (4)0.02543 (17)0.0783 (12)
H30.15601.22830.02890.094*
C40.1653 (5)1.0632 (5)0.01535 (16)0.0814 (13)
H40.08811.07920.04000.098*
C50.2383 (5)0.9517 (4)0.01931 (17)0.0805 (12)
H50.21060.89120.04700.097*
C60.3530 (5)0.9262 (3)0.01707 (15)0.0683 (11)
H60.40070.84850.01440.082*
C70.7985 (4)0.9729 (3)0.10372 (14)0.0651 (10)
C80.7966 (4)0.9995 (4)0.17018 (14)0.0892 (12)
H8A0.78200.92090.19110.134*
H8B0.88611.03650.18180.134*
H8C0.72041.05770.17920.134*
C90.9184 (4)0.8808 (3)0.08820 (16)0.0868 (12)
H9A0.91600.86310.04680.130*
H9B1.00860.91850.09820.130*
H9C0.90610.80270.10970.130*
C100.8088 (4)1.0947 (3)0.06758 (17)0.1018 (15)
H10A0.73401.15230.07900.153*
H10B0.89991.13430.07430.153*
H10C0.79911.07440.02660.153*
C110.1317 (4)1.4709 (3)0.34283 (13)0.0549 (9)
C120.2013 (4)1.5837 (3)0.33049 (14)0.0687 (11)
H120.16041.64320.30520.082*
C130.3322 (4)1.6075 (4)0.35607 (17)0.0791 (11)
H130.38041.68230.34660.095*
C140.3932 (4)1.5244 (5)0.39494 (17)0.0868 (13)
H140.48071.54270.41230.104*
C150.3220 (4)1.4137 (4)0.40762 (16)0.0815 (13)
H150.36191.35660.43430.098*
C160.1937 (4)1.3846 (3)0.38212 (14)0.0705 (10)
H160.14811.30800.39090.085*
C170.2373 (4)1.5304 (3)0.26576 (14)0.0632 (10)
C180.2876 (5)1.5848 (4)0.20743 (18)0.1162 (16)
H18A0.22321.65080.19500.174*
H18B0.38171.61990.21200.174*
H18C0.28981.51820.17850.174*
C190.3190 (4)1.4111 (3)0.28162 (15)0.0825 (12)
H19A0.30821.34900.25090.124*
H19B0.41841.43140.28630.124*
H19C0.28251.37680.31780.124*
C200.2443 (5)1.6306 (4)0.31436 (17)0.1057 (15)
H20A0.21861.59220.35120.159*
H20B0.33971.66390.31690.159*
H20C0.17911.69880.30560.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0774 (6)0.0593 (5)0.0608 (5)0.0046 (6)0.0068 (6)0.0011 (5)
S20.0663 (5)0.0637 (5)0.0488 (4)0.0082 (6)0.0024 (5)0.0111 (5)
O10.102 (2)0.0703 (15)0.1102 (19)0.0104 (17)0.011 (2)0.0274 (15)
O20.0870 (17)0.0736 (15)0.0582 (14)0.0001 (18)0.0085 (15)0.0076 (12)
N10.087 (2)0.092 (2)0.0550 (19)0.022 (2)0.005 (2)0.027 (2)
N20.078 (2)0.071 (2)0.0618 (19)0.024 (2)0.0131 (19)0.0221 (17)
C10.067 (2)0.060 (2)0.0430 (18)0.001 (2)0.0080 (18)0.0012 (18)
C20.078 (3)0.067 (3)0.063 (2)0.000 (3)0.003 (2)0.0006 (19)
C30.082 (3)0.075 (3)0.078 (3)0.017 (3)0.013 (3)0.010 (2)
C40.077 (3)0.106 (3)0.061 (3)0.002 (3)0.003 (3)0.012 (3)
C50.094 (3)0.088 (3)0.059 (3)0.011 (3)0.002 (3)0.004 (2)
C60.087 (3)0.066 (2)0.052 (2)0.002 (3)0.007 (2)0.0038 (19)
C70.072 (3)0.054 (2)0.069 (2)0.004 (2)0.009 (2)0.0059 (18)
C80.087 (3)0.102 (3)0.078 (3)0.004 (3)0.009 (3)0.017 (2)
C90.076 (3)0.083 (3)0.101 (3)0.011 (3)0.014 (3)0.004 (2)
C100.116 (4)0.073 (3)0.117 (3)0.010 (3)0.024 (3)0.021 (2)
C110.062 (2)0.057 (2)0.0462 (19)0.001 (2)0.000 (2)0.0024 (17)
C120.068 (3)0.073 (3)0.065 (2)0.001 (2)0.012 (2)0.0014 (19)
C130.071 (3)0.082 (3)0.084 (3)0.009 (3)0.007 (3)0.004 (2)
C140.065 (3)0.117 (3)0.079 (3)0.010 (3)0.014 (2)0.017 (3)
C150.081 (3)0.097 (3)0.066 (3)0.027 (3)0.017 (3)0.004 (2)
C160.086 (3)0.070 (2)0.055 (2)0.012 (3)0.008 (2)0.004 (2)
C170.068 (2)0.063 (2)0.058 (2)0.002 (2)0.001 (2)0.0055 (18)
C180.091 (3)0.150 (4)0.107 (3)0.016 (3)0.013 (3)0.052 (3)
C190.071 (3)0.078 (3)0.098 (3)0.009 (2)0.004 (2)0.002 (2)
C200.105 (3)0.084 (3)0.128 (4)0.000 (3)0.019 (3)0.025 (3)
Geometric parameters (Å, º) top
S1—O11.479 (2)C9—H9B0.9600
S1—N11.634 (3)C9—H9C0.9600
S1—C71.832 (4)C10—H10A0.9600
S2—O21.494 (2)C10—H10B0.9600
S2—N21.654 (3)C10—H10C0.9600
S2—C171.831 (4)C11—C121.378 (4)
N1—H10.80 (3)C11—C161.397 (4)
N1—C11.403 (4)C12—H120.9300
N2—H20.83 (2)C12—C131.379 (5)
N2—C111.403 (4)C13—H130.9300
C1—C21.370 (4)C13—C141.365 (5)
C1—C61.381 (4)C14—H140.9300
C2—H2A0.9300C14—C151.368 (5)
C2—C31.382 (5)C15—H150.9300
C3—H30.9300C15—C161.368 (5)
C3—C41.370 (5)C16—H160.9300
C4—H40.9300C17—C181.519 (4)
C4—C51.356 (5)C17—C191.509 (4)
C5—H50.9300C17—C201.526 (4)
C5—C61.381 (5)C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—C81.537 (4)C18—H18C0.9600
C7—C91.521 (4)C19—H19A0.9600
C7—C101.520 (4)C19—H19B0.9600
C8—H8A0.9600C19—H19C0.9600
C8—H8B0.9600C20—H20A0.9600
C8—H8C0.9600C20—H20B0.9600
C9—H9A0.9600C20—H20C0.9600
O1—S1—N1110.38 (17)C7—C10—H10A109.5
O1—S1—C7105.27 (16)C7—C10—H10B109.5
N1—S1—C7100.83 (16)C7—C10—H10C109.5
O2—S2—N2109.77 (14)H10A—C10—H10B109.5
O2—S2—C17105.97 (15)H10A—C10—H10C109.5
N2—S2—C1799.62 (16)H10B—C10—H10C109.5
S1—N1—H1119 (2)C12—C11—N2121.4 (3)
C1—N1—S1122.5 (3)C12—C11—C16119.3 (4)
C1—N1—H1118 (2)C16—C11—N2119.3 (3)
S2—N2—H2115.2 (19)C11—C12—H12120.4
C11—N2—S2121.0 (3)C11—C12—C13119.2 (4)
C11—N2—H2117.5 (19)C13—C12—H12120.4
C2—C1—N1118.3 (3)C12—C13—H13119.0
C2—C1—C6119.3 (3)C14—C13—C12122.0 (4)
C6—C1—N1122.5 (4)C14—C13—H13119.0
C1—C2—H2A119.9C13—C14—H14120.9
C1—C2—C3120.2 (4)C13—C14—C15118.2 (4)
C3—C2—H2A119.9C15—C14—H14120.9
C2—C3—H3119.8C14—C15—H15119.1
C4—C3—C2120.5 (4)C14—C15—C16121.8 (4)
C4—C3—H3119.8C16—C15—H15119.1
C3—C4—H4120.4C11—C16—H16120.3
C5—C4—C3119.2 (4)C15—C16—C11119.4 (4)
C5—C4—H4120.4C15—C16—H16120.3
C4—C5—H5119.4C18—C17—S2103.5 (2)
C4—C5—C6121.2 (4)C18—C17—C20111.2 (3)
C6—C5—H5119.4C19—C17—S2111.5 (2)
C1—C6—C5119.6 (4)C19—C17—C18111.3 (3)
C1—C6—H6120.2C19—C17—C20112.0 (3)
C5—C6—H6120.2C20—C17—S2107.0 (3)
C8—C7—S1110.1 (3)C17—C18—H18A109.5
C9—C7—S1104.3 (2)C17—C18—H18B109.5
C9—C7—C8110.6 (3)C17—C18—H18C109.5
C10—C7—S1108.0 (3)H18A—C18—H18B109.5
C10—C7—C8112.4 (3)H18A—C18—H18C109.5
C10—C7—C9111.1 (3)H18B—C18—H18C109.5
C7—C8—H8A109.5C17—C19—H19A109.5
C7—C8—H8B109.5C17—C19—H19B109.5
C7—C8—H8C109.5C17—C19—H19C109.5
H8A—C8—H8B109.5H19A—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19C109.5
H8B—C8—H8C109.5H19B—C19—H19C109.5
C7—C9—H9A109.5C17—C20—H20A109.5
C7—C9—H9B109.5C17—C20—H20B109.5
C7—C9—H9C109.5C17—C20—H20C109.5
H9A—C9—H9B109.5H20A—C20—H20B109.5
H9A—C9—H9C109.5H20A—C20—H20C109.5
H9B—C9—H9C109.5H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.80 (3)2.17 (3)2.937 (4)161 (3)
N2—H2···O1ii0.83 (2)2.11 (2)2.914 (4)166 (3)
Symmetry codes: (i) x1/2, y5/2, z; (ii) x1/2, y2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H15NOS
Mr197.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.3596 (4), 10.4702 (4), 22.7438 (10)
V3)2228.82 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.38 × 0.32 × 0.30
Data collection
DiffractometerAglenet Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.987, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6065, 3993, 2503
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.090, 0.98
No. of reflections3993
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.26
Absolute structureFlack (1983), 1390 Friedel pairs
Absolute structure parameter0.09 (9)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.80 (3)2.17 (3)2.937 (4)161 (3)
N2—H2···O1ii0.83 (2)2.11 (2)2.914 (4)166 (3)
Symmetry codes: (i) x1/2, y5/2, z; (ii) x1/2, y2, z+1/2.
 

Acknowledgements

We thank the Ministry of Human Resources and Social Security of China, the Science and Technology Bureau of Sichuan (grant No. 2011HH0016), the Open Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection and the Cultivating Programme for Excellent Innovation Teams of Chengdu University of Technology (No. HY0084) for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDatta, M., Buglass, A. J. & Elsegood, M. R. J. (2009a). Acta Cryst. E65, o2823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, M., Buglass, A. J. & Elsegood, M. R. J. (2009b). Acta Cryst. E65, o2034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, M., Buglass, A. J. & Elsegood, M. R. J. (2010). Acta Cryst. E66, o109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269–5278.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Dai, C., Tu, X., Wang, W. & Zeng, Q. (2012a). Acta Cryst. E68, o773.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, X. F., Tu, X. Z., Dai, C., Zhang, X. P., Zhang, B. B. & Zeng, Q. L. (2012b). J. Org. Chem. 77, 4454–4459.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, B., Wang, Y., Sun, X., Wang, W. & Zeng, Q. (2012). Acta Cryst. E68, o1389.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds