organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-2-oxo­ethyl anthracene-9-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 9 May 2012; accepted 18 May 2012; online 26 May 2012)

In the title compound, C23H15BrO3, the anthracene ring system is essentially planar [maximum deviation = 0.29 (2) Å] and makes a dihedral angle of 5.74 (8)° with the mean plane of the bromo-substituted benzene ring. An intra­molecular C—H⋯O hydrogen bond generates an S(9) ring motif. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming a two-dimensional network parallel to the ac plane. ππ stacking inter­actions are observed between benzene rings [centroid–centroid distances = 3.5949 (14) and 3.5960 (13) Å].

Related literature

For background to the applications of anthracene, see: Bae et al. (2010[Bae, S. Y., Jung, K. H., Hoang, M. H., Kim, K. H., Lee, T. W., Cho, M. J., Jin, J., Lee, D. H., Chung, D. S., Park, C. E. & Choi, D. H. (2010). Synth. Met. 160, 1022-1029.]); Reddy et al. (2011[Reddy, M. A., Mallesham, G., Thomas, A., Srinivas, K., Rao, V. J., Bhanuprakash, K., Giribabu, L., Grover, R., Kumar, A., Kamalasanan, M. N. & Srivastava, R. (2011). Synth. Met. 161, 869-880.]); Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H15BrO3

  • Mr = 419.26

  • Monoclinic, P 21 /c

  • a = 10.1906 (8) Å

  • b = 15.0591 (12) Å

  • c = 13.7938 (8) Å

  • β = 122.376 (4)°

  • V = 1787.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 100 K

  • 0.29 × 0.19 × 0.18 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.550, Tmax = 0.677

  • 23513 measured reflections

  • 6409 independent reflections

  • 4600 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.141

  • S = 1.01

  • 6409 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.67 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O3 0.93 2.50 3.401 (3) 164
C20—H20A⋯O1i 0.93 2.47 3.394 (3) 176
C22—H22A⋯O3ii 0.93 2.31 3.199 (3) 159
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthracene is a solid polycyclic aromatic hydrocarbon consisting of three fused benzene rings. It is used in the production of the dyes and organic semiconductor (Bae et al., 2010) as high energy photons, electrons and alpha particle detectors and also used in blue light emitter in OLEDs (Reddy et al., 2011) and identification of organic acids (Rather & Reid, 1919). Keeping this in view, the title compound (I) was synthesized to study its crystal structure.

In the title compound of (I), (Fig. 1), the anthracene (C1–C14) is essentially planar with maximum deviation of 0.029 (2) Å at atom C7 and makes a dihedral angle of 5.74 (8)° with the mean plane of bromo-substituted benzene (C18–C23) ring. The intramolecular C12—H12A···O3 interaction generates a S(9) ring motif (Bernstein et al., 1995).

In the crystal structure of (Fig, 2), the molecules are linked by C20—H20A···O1 and C22—H22A···O3 interactions to form a two-dimensional network parallel to ac plane. ππ stacking interactions are observed between benzene rings with Cg2···Cg3 and Cg2···Cg4 distances of 3.5949 (14) and 3.5960 (13) Å, respectively. [Cg2 , Cg3 and Cg4 are the centroids of (C1/C6–C8/C13–C14), (C8–C13) and (C18–C23) rings, respectively.]

Related literature top

For background to the applications of anthracene, see: Bae et al. (2010); Reddy et al. (2011); Rather & Reid (1919). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of anthracene-9-carboxylic acid (1.0 g, 0.0044 mol), potassium carbonate (0.589 g, 0.0043 mol) and 2-bromo-1-(4-bromophenyl)ethanone (0.746 g, 0.0053 mol) in dimethylformamide (10 ml) was stirred at room temperature for 1 h. On cooling, colourless needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl anthracene-9-carboxylate separated. They were collected by filtration and recrystallized from ethanol. Yield: 1.60 g, 85.1 %, M.p. 421–423 K.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 and 0.97 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom for the H atoms. Four outliers (-4 0 4), (0 2 1), (0 2 0) and (0 6 0) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius. An intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing viewed along the b-axis, showing the molecules linked into a two-dimensional network parallel to ac plane. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.
2-(4-Bromophenyl)-2-oxoethyl anthracene-9-carboxylate top
Crystal data top
C23H15BrO3F(000) = 848
Mr = 419.26Dx = 1.558 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5144 reflections
a = 10.1906 (8) Åθ = 2.5–31.7°
b = 15.0591 (12) ŵ = 2.32 mm1
c = 13.7938 (8) ÅT = 100 K
β = 122.376 (4)°Block, colourless
V = 1787.8 (2) Å30.29 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6409 independent reflections
Radiation source: fine-focus sealed tube4600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.550, Tmax = 0.677k = 2222
23513 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0886P)2 + 0.0927P]
where P = (Fo2 + 2Fc2)/3
6409 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 1.67 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C23H15BrO3V = 1787.8 (2) Å3
Mr = 419.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1906 (8) ŵ = 2.32 mm1
b = 15.0591 (12) ÅT = 100 K
c = 13.7938 (8) Å0.29 × 0.19 × 0.18 mm
β = 122.376 (4)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6409 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4600 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.677Rint = 0.042
23513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 1.67 e Å3
6409 reflectionsΔρmin = 0.48 e Å3
244 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.87070 (3)0.870236 (16)0.94495 (2)0.03087 (9)
O10.1433 (2)0.62950 (10)0.30661 (16)0.0325 (4)
O20.29082 (18)0.51653 (10)0.41883 (13)0.0240 (3)
O30.50031 (19)0.63375 (10)0.44349 (14)0.0261 (3)
C10.0111 (2)0.44108 (13)0.19350 (18)0.0216 (4)
C20.0870 (3)0.45257 (15)0.2544 (2)0.0260 (4)
H2A0.04630.49230.31540.031*
C30.2193 (3)0.40581 (17)0.2243 (2)0.0323 (5)
H3A0.26720.41390.26510.039*
C40.2831 (3)0.34522 (17)0.1312 (3)0.0371 (6)
H4A0.37310.31400.11090.045*
C50.2135 (3)0.33265 (15)0.0721 (2)0.0335 (5)
H5A0.25620.29200.01200.040*
C60.0757 (3)0.38009 (14)0.0990 (2)0.0257 (4)
C70.0046 (3)0.36890 (14)0.0382 (2)0.0271 (4)
H7A0.04920.33080.02460.033*
C80.1329 (2)0.41350 (15)0.06852 (18)0.0253 (4)
C90.2078 (3)0.40118 (17)0.0066 (2)0.0308 (5)
H9A0.16440.36270.05580.037*
C100.3417 (3)0.44494 (18)0.0377 (2)0.0338 (5)
H10A0.39010.43520.00250.041*
C110.4079 (3)0.50561 (17)0.1314 (2)0.0307 (5)
H11A0.49920.53530.15190.037*
C120.3393 (2)0.52057 (15)0.19129 (19)0.0248 (4)
H12A0.38290.56120.25140.030*
C130.1998 (2)0.47415 (14)0.16253 (17)0.0218 (4)
C140.1252 (2)0.48732 (13)0.22245 (17)0.0200 (4)
C150.1862 (2)0.55352 (14)0.31773 (18)0.0212 (4)
C160.3542 (3)0.57382 (15)0.51649 (18)0.0240 (4)
H16A0.39990.53850.58600.029*
H16B0.27190.60960.51190.029*
C170.4772 (2)0.63405 (12)0.52133 (18)0.0195 (4)
C180.5685 (2)0.69144 (13)0.62398 (17)0.0183 (3)
C190.7085 (2)0.72715 (14)0.64551 (17)0.0225 (4)
H19A0.74100.71480.59550.027*
C200.7993 (3)0.78068 (14)0.74042 (18)0.0244 (4)
H20A0.89340.80350.75570.029*
C210.7457 (2)0.79908 (13)0.81176 (18)0.0215 (4)
C220.6081 (2)0.76560 (14)0.79325 (18)0.0227 (4)
H22A0.57500.77960.84250.027*
C230.5203 (2)0.71067 (14)0.69956 (18)0.0212 (4)
H23A0.42850.68630.68670.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03828 (15)0.03103 (13)0.02549 (13)0.00894 (9)0.01853 (11)0.00714 (8)
O10.0254 (8)0.0250 (8)0.0331 (9)0.0049 (6)0.0064 (7)0.0067 (6)
O20.0261 (8)0.0231 (7)0.0187 (7)0.0025 (6)0.0094 (6)0.0007 (5)
O30.0233 (7)0.0367 (9)0.0196 (7)0.0046 (6)0.0124 (6)0.0027 (6)
C10.0187 (9)0.0187 (8)0.0222 (10)0.0003 (7)0.0075 (8)0.0013 (7)
C20.0236 (10)0.0257 (10)0.0273 (11)0.0005 (8)0.0127 (9)0.0023 (8)
C30.0282 (11)0.0326 (12)0.0380 (13)0.0033 (9)0.0191 (11)0.0031 (10)
C40.0275 (12)0.0303 (11)0.0485 (16)0.0099 (10)0.0169 (12)0.0008 (11)
C50.0266 (11)0.0206 (10)0.0389 (13)0.0058 (9)0.0079 (10)0.0069 (9)
C60.0231 (10)0.0191 (9)0.0257 (10)0.0033 (7)0.0070 (9)0.0008 (7)
C70.0271 (11)0.0216 (10)0.0224 (10)0.0016 (8)0.0065 (9)0.0025 (8)
C80.0263 (11)0.0223 (10)0.0219 (10)0.0089 (8)0.0092 (9)0.0002 (7)
C90.0365 (12)0.0318 (11)0.0199 (10)0.0119 (10)0.0123 (10)0.0031 (9)
C100.0403 (13)0.0424 (13)0.0274 (11)0.0161 (11)0.0240 (11)0.0090 (10)
C110.0256 (11)0.0398 (12)0.0286 (11)0.0049 (9)0.0157 (10)0.0083 (10)
C120.0207 (9)0.0302 (10)0.0204 (10)0.0029 (8)0.0091 (8)0.0006 (8)
C130.0185 (9)0.0240 (9)0.0195 (9)0.0048 (7)0.0079 (8)0.0015 (7)
C140.0181 (9)0.0200 (8)0.0182 (9)0.0022 (7)0.0073 (7)0.0000 (7)
C150.0191 (9)0.0241 (9)0.0220 (9)0.0012 (7)0.0121 (8)0.0009 (7)
C160.0270 (10)0.0276 (10)0.0186 (9)0.0070 (8)0.0131 (8)0.0035 (8)
C170.0180 (9)0.0203 (9)0.0203 (9)0.0014 (7)0.0104 (8)0.0014 (7)
C180.0172 (8)0.0199 (8)0.0190 (9)0.0009 (7)0.0104 (7)0.0027 (7)
C190.0222 (9)0.0300 (10)0.0196 (9)0.0043 (8)0.0140 (8)0.0002 (8)
C200.0244 (10)0.0290 (10)0.0243 (10)0.0051 (8)0.0160 (9)0.0003 (8)
C210.0265 (10)0.0197 (9)0.0184 (9)0.0007 (7)0.0119 (8)0.0003 (7)
C220.0253 (10)0.0240 (9)0.0226 (10)0.0027 (8)0.0154 (9)0.0013 (8)
C230.0206 (9)0.0252 (9)0.0221 (9)0.0012 (7)0.0143 (8)0.0031 (8)
Geometric parameters (Å, º) top
Br1—C211.908 (2)C10—C111.424 (4)
O1—C151.205 (2)C10—H10A0.9300
O2—C151.342 (3)C11—C121.356 (3)
O2—C161.430 (3)C11—H11A0.9300
O3—C171.216 (2)C12—C131.436 (3)
C1—C141.406 (3)C12—H12A0.9300
C1—C21.425 (3)C13—C141.405 (3)
C1—C61.434 (3)C14—C151.494 (3)
C2—C31.373 (3)C16—C171.520 (3)
C2—H2A0.9300C16—H16A0.9700
C3—C41.418 (4)C16—H16B0.9700
C3—H3A0.9300C17—C181.485 (3)
C4—C51.350 (4)C18—C191.400 (3)
C4—H4A0.9300C18—C231.400 (3)
C5—C61.436 (3)C19—C201.387 (3)
C5—H5A0.9300C19—H19A0.9300
C6—C71.382 (3)C20—C211.385 (3)
C7—C81.401 (3)C20—H20A0.9300
C7—H7A0.9300C21—C221.380 (3)
C8—C131.426 (3)C22—C231.384 (3)
C8—C91.430 (3)C22—H22A0.9300
C9—C101.361 (4)C23—H23A0.9300
C9—H9A0.9300
C15—O2—C16115.81 (17)C14—C13—C8118.66 (19)
C14—C1—C2122.51 (19)C14—C13—C12122.43 (19)
C14—C1—C6118.6 (2)C8—C13—C12118.9 (2)
C2—C1—C6118.9 (2)C13—C14—C1121.74 (19)
C3—C2—C1121.0 (2)C13—C14—C15120.68 (18)
C3—C2—H2A119.5C1—C14—C15117.56 (18)
C1—C2—H2A119.5O1—C15—O2124.0 (2)
C2—C3—C4120.3 (2)O1—C15—C14124.7 (2)
C2—C3—H3A119.9O2—C15—C14111.23 (17)
C4—C3—H3A119.9O2—C16—C17110.32 (16)
C5—C4—C3120.2 (2)O2—C16—H16A109.6
C5—C4—H4A119.9C17—C16—H16A109.6
C3—C4—H4A119.9O2—C16—H16B109.6
C4—C5—C6122.1 (2)C17—C16—H16B109.6
C4—C5—H5A119.0H16A—C16—H16B108.1
C6—C5—H5A119.0O3—C17—C18121.71 (18)
C7—C6—C1119.7 (2)O3—C17—C16120.27 (18)
C7—C6—C5122.7 (2)C18—C17—C16118.01 (17)
C1—C6—C5117.6 (2)C19—C18—C23119.11 (19)
C6—C7—C8121.7 (2)C19—C18—C17118.19 (17)
C6—C7—H7A119.1C23—C18—C17122.70 (18)
C8—C7—H7A119.1C20—C19—C18120.87 (19)
C7—C8—C13119.6 (2)C20—C19—H19A119.6
C7—C8—C9121.9 (2)C18—C19—H19A119.6
C13—C8—C9118.6 (2)C21—C20—C19117.97 (19)
C10—C9—C8121.0 (2)C21—C20—H20A121.0
C10—C9—H9A119.5C19—C20—H20A121.0
C8—C9—H9A119.5C22—C21—C20122.95 (19)
C9—C10—C11120.3 (2)C22—C21—Br1118.15 (15)
C9—C10—H10A119.9C20—C21—Br1118.86 (16)
C11—C10—H10A119.9C21—C22—C23118.40 (18)
C12—C11—C10120.8 (2)C21—C22—H22A120.8
C12—C11—H11A119.6C23—C22—H22A120.8
C10—C11—H11A119.6C22—C23—C18120.67 (19)
C11—C12—C13120.5 (2)C22—C23—H23A119.7
C11—C12—H12A119.7C18—C23—H23A119.7
C13—C12—H12A119.7
C14—C1—C2—C3179.5 (2)C12—C13—C14—C152.1 (3)
C6—C1—C2—C30.5 (3)C2—C1—C14—C13179.01 (19)
C1—C2—C3—C40.2 (4)C6—C1—C14—C131.0 (3)
C2—C3—C4—C50.5 (4)C2—C1—C14—C152.7 (3)
C3—C4—C5—C60.9 (4)C6—C1—C14—C15177.28 (18)
C14—C1—C6—C70.8 (3)C16—O2—C15—O11.3 (3)
C2—C1—C6—C7179.3 (2)C16—O2—C15—C14178.65 (16)
C14—C1—C6—C5179.10 (19)C13—C14—C15—O193.4 (3)
C2—C1—C6—C50.9 (3)C1—C14—C15—O184.9 (3)
C4—C5—C6—C7179.0 (2)C13—C14—C15—O289.2 (2)
C4—C5—C6—C11.1 (4)C1—C14—C15—O292.5 (2)
C1—C6—C7—C82.2 (3)C15—O2—C16—C1778.0 (2)
C5—C6—C7—C8177.7 (2)O2—C16—C17—O35.7 (3)
C6—C7—C8—C131.9 (3)O2—C16—C17—C18173.42 (17)
C6—C7—C8—C9179.2 (2)O3—C17—C18—C1917.1 (3)
C7—C8—C9—C10179.8 (2)C16—C17—C18—C19162.00 (19)
C13—C8—C9—C101.2 (3)O3—C17—C18—C23163.1 (2)
C8—C9—C10—C111.4 (4)C16—C17—C18—C2317.7 (3)
C9—C10—C11—C120.2 (4)C23—C18—C19—C200.2 (3)
C10—C11—C12—C131.2 (3)C17—C18—C19—C20179.53 (19)
C7—C8—C13—C140.1 (3)C18—C19—C20—C211.3 (3)
C9—C8—C13—C14179.09 (19)C19—C20—C21—C220.9 (3)
C7—C8—C13—C12178.89 (19)C19—C20—C21—Br1178.53 (16)
C9—C8—C13—C120.1 (3)C20—C21—C22—C230.5 (3)
C11—C12—C13—C14179.8 (2)Br1—C21—C22—C23177.15 (15)
C11—C12—C13—C81.3 (3)C21—C22—C23—C181.6 (3)
C8—C13—C14—C11.3 (3)C19—C18—C23—C221.2 (3)
C12—C13—C14—C1179.75 (19)C17—C18—C23—C22179.03 (18)
C8—C13—C14—C15176.91 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O30.932.503.401 (3)164
C20—H20A···O1i0.932.473.394 (3)176
C22—H22A···O3ii0.932.313.199 (3)159
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H15BrO3
Mr419.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.1906 (8), 15.0591 (12), 13.7938 (8)
β (°) 122.376 (4)
V3)1787.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.29 × 0.19 × 0.18
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.550, 0.677
No. of measured, independent and
observed [I > 2σ(I)] reflections
23513, 6409, 4600
Rint0.042
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.141, 1.01
No. of reflections6409
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.67, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O30.932.503.401 (3)164
C20—H20A···O1i0.932.473.394 (3)176
C22—H22A···O3ii0.932.313.199 (3)159
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/ 811151). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award. SMN thanks Department of Information Technology, New Delhi, India, for financial support.

References

First citationBae, S. Y., Jung, K. H., Hoang, M. H., Kim, K. H., Lee, T. W., Cho, M. J., Jin, J., Lee, D. H., Chung, D. S., Park, C. E. & Choi, D. H. (2010). Synth. Met. 160, 1022–1029.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationReddy, M. A., Mallesham, G., Thomas, A., Srinivas, K., Rao, V. J., Bhanuprakash, K., Giribabu, L., Grover, R., Kumar, A., Kamalasanan, M. N. & Srivastava, R. (2011). Synth. Met. 161, 869–880.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds