

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Chloro-2-phenyl-3-(2-phenylethynyl)quinoxaline

Xi-Lin Ouyang,^a Miao Ouyang^b and Shi-Wen Huang^a*

^aYoujiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China, and ^bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China Correspondence e-mail: shi.wen.huang@163.com

Received 18 April 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.128; data-to-parameter ratio = 16.4.

In the title compound, $C_{22}H_{13}ClN_2$, the quinoxaline ring system is close to planar [maximum deviation = 0.061 (2) Å]. The phenyl ring at the 2-position and the phenyl ring of the phenylethynyl substituent make dihedral angles of 49.32 (7) and 11.99 (7) °, respectively, with the quinoxaline mean plane. The two phenyl rings are inclined to one another by 61.27 (9)°. In the crystal, molecules are linked by $C-H\cdots\pi$ and $\pi-\pi$ interactions [centroid–centroid distances = 3.6210 (12) and 3.8091 (12) Å].

Related literature

For the biological activity of quinoxaline derivatives, see: Rodrigo *et al.* (2002); Watkins *et al.* (2009); Sashidhara *et al.* (2009). For the crystal structures of quinoxaline derivatives, see: Hegedus *et al.* (2003); Naraso *et al.* (2006); Hassan *et al.* (2010); Ammermann *et al.* (2008); Daouda *et al.* (2011); Ramli *et al.* (2012).

Experimental

Crystal data	
$C_{22}H_{13}ClN_2$	
$M_r = 340.79$	
Triclinic, P1	

a = 8.8652 (13) Åb = 9.8591 (8) Åc = 10.9740 (17) Å $\alpha = 73.032 (15)^{\circ}$ $\beta = 81.036 (17)^{\circ}$ $\gamma = 64.374 (13)^{\circ}$ $V = 826.68 (19) \text{ Å}^{3}$ Z = 2

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{min} = 0.649, T_{max} = 0.954$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 227 parameters $wR(F^2) = 0.128$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.27$ e Å $^{-3}$ 3714 reflections $\Delta \rho_{min} = -0.37$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C17-C22 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14\cdots Cg2^{i}$	0.94	3.00	3.845 (2)	151
6 (i)		1		

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2002); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2002); software used to prepare material for publication: *SHELXL97*.

This work was funded by the Project of the Education Department of Guangxi Province (No. 201106LX593) and the Youth Foundation of Hechi University (No. 2011B-N004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2414).

References

- Ammermann, S., Daniliuc, C., Jones, P. G., du Mont, W.-W. & Johannes, H.-H. (2008). Acta Cryst. E64, o1205–o1206.
- Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235.
- Hassan, N. D., Abdullah, Z., Tajuddin, H. A., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 02429.
- Hegedus, L. S., Greenberg, M. M., Wendling, J. J. & Bullock, J. P. (2003). J. Org. Chem. 68, 4179–4188.
- Jacobson, R. (1998). *REQAB*. Private communication to the Rigaku Corporation, Tokyo, Japan.
- Naraso, Nishida, J., Kumaki, D., Tokito, S. & Yamashita, Y. (2006). J. Am. Chem. Soc. 128, 9598–9599.
- Ramli, Y., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o241. Rigaku (2002). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). *Trends Heterocycl. Chem.* 8, 137–143.
- Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). *Eur. J. Med. Chem.* 44, 1813–1818.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580– 585.

Mo $K\alpha$ radiation

 $0.70 \times 0.45 \times 0.20 \text{ mm}$

7504 measured reflections

3714 independent reflections

2855 reflections with $I > 2\sigma(I)$

 $\mu = 0.24 \text{ mm}^{-1}$

T = 223 K

 $R_{\rm int} = 0.024$

supporting information

Acta Cryst. (2012). E68, o1741 [doi:10.1107/S1600536812020776]

6-Chloro-2-phenyl-3-(2-phenylethynyl)quinoxaline

Xi-Lin Ouyang, Miao Ouyang and Shi-Wen Huang

S1. Comment

The design of small molecular weight compounds has aroused much interest in the past decades due to the advances in targeted therapeutics coupled with novel techniques in target identification. It is well know that quinoxalines have broad applications in the fields of medicine and pharmaceuticals. It has been shown that many quinoxaline derivatives exhibit good biological activities, such as antituberculous activities (Rodrigo *et al.*, 2002), antioxidative properties (Watkins *et al.*, 2009), and antidyslipidemic (Sashidhara *et al.*, 2009). Recently, a large number of crystal structures of quinoxaline derivatives have been reported (Hegedus *et al.*, 2003; Naraso *et al.*, 2006; Hassan *et al.*, 2010; Ammermann *et al.*, 2008; Daouda *et al.*, 2011; Ramli *et al.*, 2012).

In the title compound (Fig. 1) the phenyl ring of the phenylethynyl substituent is twisted by $11.99 (7)^{\circ}$ out of the mean plane of the quinoxaline fused-ring system [planar to within 0.061 (2) Å]. The phenyl ring of the substituent at the 2-position, C7, makes dihedral angles of 49.32 (7)° and 61.27 (9)°, respectively, with the quinoxaline mean plane and the phenylethynyl phenyl ring.

In the crystal (Fig. 2), molecules are linked by C—H··· π interactions involving the phenylethynyl phenyl ring (Table 1), and by π – π interactions involving inversion related quinoxaline rings and the phenylethynyl phenyl ring [Cg1···Cg1ⁱ 3.6210 (12) Å, interplanar spacing of 3.3635 (7) Å, slippage of 1.341 Å; Cg1···Cg2ⁱⁱ 3.8091 (12) Å; Cg1 is the centroid of the C1-C6 ring; Cg2 is the centroid of the C17-C22 ring; symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y, -z+2]. Footnote to Table 1: Cg2 is the centroid of the C17-C22 ring.

S2. Experimental

4-Chloro-1,2-diaminobenzene (2.5 mmol), CuCl (0.1 mmol), chlorobenzene (3 ml) and phenylethynylene(1 mmol) were added to a sealed tube and heated to 343 K by stirring. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the reaction mixture was extracted with EtOAc. The mixture was separated after washed by saturated NaCl solution, then the oily layer was dried by anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product obtained was purified by column chromatography (eluent: 50:1 Petroleum ether–EtOAc) to give the title compound. Block-like yellow crystals were obtained by slow evaporation of the solvents.

S3. Refinement

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

A view of the molecular structure of the title molecule showing the atom-labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing of the title compound viewed along the *a* axis.

6-Chloro-2-phenyl-3-(2-phenylethynyl)quinoxaline

Crystal data

C₂₂H₁₃ClN₂ $M_r = 340.79$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.8652 (13) Å b = 9.8591 (8) Å c = 10.9740 (17) Å $a = 73.032 (15)^{\circ}$ $\beta = 81.036 (17)^{\circ}$ $\gamma = 64.374 (13)^{\circ}$ $V = 826.68 (19) \text{ Å}^{3}$

Data collection

Rigaku Saturn diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 14.63 pixels mm⁻¹ ω scans Z = 2 F(000) = 352 $D_x = 1.369 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 3874 reflections $\theta = 3.2-27.5^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 223 KBlock, yellow $0.70 \times 0.45 \times 0.20 \text{ mm}$

Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{min} = 0.649$, $T_{max} = 0.954$ 7504 measured reflections 3714 independent reflections 2855 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$

$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.2^{\circ}$	$k = -12 \rightarrow 12$
$h = -11 \rightarrow 9$	$l = -14 \rightarrow 10$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.07	H-atom parameters constrained
3714 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0712P)^2]$
227 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	-0.11370 (6)	0.42900 (6)	1.28280 (4)	0.05093 (18)	
N1	0.47258 (16)	0.32096 (14)	0.93213 (12)	0.0299 (3)	
N2	0.26481 (16)	0.16607 (15)	0.94729 (12)	0.0314 (3)	
C1	0.05364 (19)	0.40009 (19)	1.17229 (15)	0.0344 (4)	
C2	0.1450 (2)	0.49110 (19)	1.15630 (15)	0.0349 (4)	
H2	0.1121	0.5680	1.2012	0.042*	
C3	0.28190 (19)	0.46636 (18)	1.07482 (15)	0.0326 (4)	
H3	0.3446	0.5255	1.0643	0.039*	
C4	0.32946 (18)	0.35241 (17)	1.00641 (14)	0.0286 (3)	
C5	0.22960 (19)	0.26891 (18)	1.01856 (14)	0.0298 (3)	
C6	0.0918 (2)	0.29202 (19)	1.10582 (15)	0.0338 (4)	
H6	0.0276	0.2339	1.1178	0.041*	
C7	0.51048 (19)	0.21689 (17)	0.86690 (14)	0.0292 (3)	
C8	0.40000 (18)	0.14242 (17)	0.87130 (14)	0.0288 (3)	
C9	0.67530 (19)	0.17448 (17)	0.79653 (15)	0.0308 (3)	
C10	0.8145 (2)	0.14816 (19)	0.85823 (17)	0.0379 (4)	
H10	0.8026	0.1569	0.9426	0.045*	
C11	0.9711 (2)	0.1090 (2)	0.79661 (19)	0.0456 (5)	
H11	1.0649	0.0899	0.8396	0.055*	
C12	0.9889 (2)	0.0981 (2)	0.6723 (2)	0.0485 (5)	
H12	1.0947	0.0714	0.6305	0.058*	
C13	0.8506 (2)	0.1266 (2)	0.60934 (18)	0.0459 (5)	
H13	0.8628	0.1209	0.5241	0.055*	

C14	0.6945 (2)	0.16343 (19)	0.67054 (16)	0.0366 (4)	
H14	0.6016	0.1810	0.6274	0.044*	
C15	0.43695 (19)	0.03324 (18)	0.79721 (15)	0.0322 (4)	
C16	0.4708 (2)	-0.06017 (18)	0.73719 (15)	0.0339 (4)	
C17	0.5261 (2)	-0.17824 (18)	0.66936 (15)	0.0324 (4)	
C18	0.6633 (2)	-0.1962 (2)	0.58335 (16)	0.0397 (4)	
H18	0.7119	-0.1241	0.5638	0.048*	
C19	0.7275 (2)	-0.3183 (2)	0.52727 (17)	0.0434 (4)	
H19	0.8201	-0.3299	0.4699	0.052*	
C20	0.6561 (2)	-0.4245 (2)	0.55506 (17)	0.0420 (4)	
H20	0.7017	-0.5093	0.5179	0.050*	
C21	0.5186 (2)	-0.4060(2)	0.63702 (17)	0.0399 (4)	
H21	0.4698	-0.4777	0.6547	0.048*	
C22	0.4516 (2)	-0.28344 (19)	0.69351 (16)	0.0364 (4)	
H22	0.3562	-0.2705	0.7481	0.044*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.0412 (3)	0.0698 (3)	0.0470 (3)	-0.0267 (2)	0.0169 (2)	-0.0255 (2)
N1	0.0286 (6)	0.0311 (7)	0.0339 (7)	-0.0147 (6)	0.0008 (6)	-0.0106 (6)
N2	0.0298 (7)	0.0338 (7)	0.0353 (7)	-0.0166 (6)	-0.0003 (6)	-0.0103 (6)
C1	0.0287 (8)	0.0418 (9)	0.0311 (8)	-0.0133 (7)	0.0021 (7)	-0.0102 (7)
C2	0.0334 (8)	0.0378 (9)	0.0358 (9)	-0.0136 (7)	0.0004 (7)	-0.0151 (7)
C3	0.0332 (8)	0.0334 (8)	0.0358 (8)	-0.0158 (7)	-0.0027 (7)	-0.0112 (7)
C4	0.0255 (7)	0.0310 (8)	0.0307 (8)	-0.0131 (7)	-0.0008 (6)	-0.0075 (7)
C5	0.0287 (8)	0.0306 (8)	0.0309 (8)	-0.0127 (7)	-0.0032 (6)	-0.0070 (7)
C6	0.0306 (8)	0.0387 (9)	0.0356 (8)	-0.0181 (7)	0.0014 (7)	-0.0092 (7)
C7	0.0277 (8)	0.0296 (8)	0.0308 (8)	-0.0129 (6)	-0.0011 (6)	-0.0062 (6)
C8	0.0272 (7)	0.0281 (8)	0.0325 (8)	-0.0115 (6)	-0.0018 (7)	-0.0089 (7)
C9	0.0287 (8)	0.0277 (8)	0.0386 (8)	-0.0145 (7)	0.0044 (7)	-0.0100 (7)
C10	0.0348 (9)	0.0410 (9)	0.0446 (9)	-0.0194 (8)	0.0025 (8)	-0.0164 (8)
C11	0.0289 (8)	0.0484 (11)	0.0660 (12)	-0.0191 (8)	0.0024 (9)	-0.0207 (9)
C12	0.0356 (9)	0.0501 (11)	0.0656 (12)	-0.0230 (9)	0.0192 (9)	-0.0254 (10)
C13	0.0480 (10)	0.0495 (11)	0.0443 (10)	-0.0244 (9)	0.0154 (9)	-0.0195 (9)
C14	0.0358 (9)	0.0390 (9)	0.0380 (9)	-0.0177 (8)	0.0043 (7)	-0.0130 (7)
C15	0.0297 (8)	0.0339 (8)	0.0372 (9)	-0.0161 (7)	-0.0002 (7)	-0.0105 (7)
C16	0.0333 (8)	0.0340 (9)	0.0372 (9)	-0.0165 (7)	-0.0018 (7)	-0.0082 (7)
C17	0.0331 (8)	0.0313 (8)	0.0343 (8)	-0.0132 (7)	-0.0034 (7)	-0.0096 (7)
C18	0.0445 (10)	0.0375 (9)	0.0411 (9)	-0.0212 (8)	0.0023 (8)	-0.0107 (8)
C19	0.0442 (10)	0.0480 (10)	0.0386 (9)	-0.0195 (9)	0.0078 (8)	-0.0157 (8)
C20	0.0511 (10)	0.0369 (9)	0.0404 (9)	-0.0144 (8)	-0.0025 (8)	-0.0182 (8)
C21	0.0454 (10)	0.0386 (9)	0.0447 (10)	-0.0219 (8)	-0.0052 (8)	-0.0140 (8)
C22	0.0357 (9)	0.0385 (9)	0.0406 (9)	-0.0177 (8)	-0.0005 (7)	-0.0143 (8)

Geometric parameters (Å, °)

Cl1—C1	1.7401 (16)	C11—C12	1.378 (3)
N1—C7	1.3168 (18)	C11—H11	0.9400
N1C4	1.3621 (18)	C12—C13	1.383 (3)
N2—C8	1.3216 (19)	C12—H12	0.9400
N2—C5	1.3602 (19)	C13—C14	1.384 (2)
C1—C6	1.359 (2)	C13—H13	0.9400
C1—C2	1.408 (2)	C14—H14	0.9400
C2—C3	1.366 (2)	C15—C16	1.194 (2)
С2—Н2	0.9400	C16—C17	1.431 (2)
C3—C4	1.410(2)	C17—C18	1.398 (2)
С3—Н3	0.9400	C17—C22	1.400 (2)
C4—C5	1.417 (2)	C18—C19	1.373 (2)
С5—С6	1.408 (2)	C18—H18	0.9400
С6—Н6	0.9400	C19—C20	1.384 (2)
С7—С8	1.445 (2)	C19—H19	0.9400
С7—С9	1.488 (2)	C20—C21	1.375 (2)
C8—C15	1.432 (2)	C20—H20	0.9400
C9—C10	1.389 (2)	C21—C22	1.378 (2)
C9—C14	1.397 (2)	C21—H21	0.9400
C10-C11	1.389 (2)	C22—H22	0.9400
C10—H10	0.9400		
C7—N1—C4	118.09 (11)	C12—C11—C10	119.90 (17)
C8—N2—C5	117.11 (12)	C12—C11—H11	120.1
C6—C1—C2	122.68 (14)	C10-C11-H11	120.1
C6-C1-Cl1	119.67 (12)	C11—C12—C13	119.87 (16)
C2C1Cl1	117.65 (12)	C11—C12—H12	120.1
C3—C2—C1	119.21 (14)	C13—C12—H12	120.1
С3—С2—Н2	120.4	C12—C13—C14	120.66 (17)
С1—С2—Н2	120.4	C12—C13—H13	119.7
C2—C3—C4	120.20 (13)	C14—C13—H13	119.7
С2—С3—Н3	119.9	C13—C14—C9	119.90 (16)
С4—С3—Н3	119.9	C13—C14—H14	120.0
N1-C4-C3	119.84 (12)	C9—C14—H14	120.0
N1—C4—C5	120.75 (13)	C16—C15—C8	178.49 (18)
C3—C4—C5	119.39 (13)	C15—C16—C17	174.90 (17)
N2-C5-C6	119.21 (12)	C18—C17—C22	118.90 (14)
N2-C5-C4	121.04 (13)	C18—C17—C16	120.00 (13)
C6—C5—C4	119.75 (13)	C22—C17—C16	120.97 (14)
C1—C6—C5	118.58 (13)	C19—C18—C17	120.41 (14)
С1—С6—Н6	120.7	C19—C18—H18	119.8
С5—С6—Н6	120.7	C17-C18-H18	119.8
N1—C7—C8	120.60 (12)	C18—C19—C20	120.15 (15)
N1—C7—C9	116.64 (12)	C18—C19—H19	119.9
С8—С7—С9	122.65 (12)	C20—C19—H19	119.9
N2-C8-C15	116.82 (12)	C21—C20—C19	119.98 (14)

N2—C8—C7	122.04 (12)	C21—C20—H20	120.0
C15—C8—C7	121.08 (13)	С19—С20—Н20	120.0
C10—C9—C14	118.97 (14)	C20—C21—C22	120.73 (14)
С10—С9—С7	118.40 (14)	C20—C21—H21	119.6
C14—C9—C7	122.62 (15)	C22—C21—H21	119.6
C9—C10—C11	120.69 (16)	C21—C22—C17	119.76 (15)
С9—С10—Н10	119.7	C21—C22—H22	120.1
C11-C10-H10	119.7	C17—C22—H22	120.1
	2.0.(2)	NI 67 60 610	112(2)
$C_{0} - C_{1} - C_{2} - C_{3}$	-2.8(3)	NI = C7 = C9 = C10	44.3 (2)
CII = CI = C2 = C3	1/6.92 (13)	C8 - C7 - C9 - C10	-132.03 (16)
C1 - C2 - C3 - C4	0.9 (3)	NI - C7 - C9 - C14	-134.37 (16)
C/-NI-C4-C3	-178.15(14)	C8 - C7 - C9 - C14	49.3 (2)
C/-NI-C4-C5	3.5 (2)		-1.0 (2)
C2—C3—C4—N1	-175.48 (15)	C7—C9—C10—C11	-179.69 (14)
C2—C3—C4—C5	2.9 (2)	C9—C10—C11—C12	0.9 (3)
C8—N2—C5—C6	-176.75 (14)	C10—C11—C12—C13	0.1 (3)
C8—N2—C5—C4	3.1 (2)	C11—C12—C13—C14	-1.1 (3)
N1—C4—C5—N2	-6.4 (2)	C12—C13—C14—C9	1.0 (3)
C3—C4—C5—N2	175.30 (14)	C10-C9-C14-C13	0.0 (2)
N1—C4—C5—C6	173.49 (14)	C7—C9—C14—C13	178.65 (14)
C3—C4—C5—C6	-4.8 (2)	N2-C8-C15-C16	-108 (6)
C2-C1-C6-C5	0.8 (3)	C7—C8—C15—C16	70 (6)
Cl1—C1—C6—C5	-178.91 (12)	C8—C15—C16—C17	-23 (7)
N2—C5—C6—C1	-177.12 (15)	C15—C16—C17—C18	-56.4 (18)
C4—C5—C6—C1	3.0 (2)	C15—C16—C17—C22	119.5 (18)
C4—N1—C7—C8	2.0 (2)	C22-C17-C18-C19	-2.4 (3)
C4—N1—C7—C9	-174.41 (13)	C16—C17—C18—C19	173.60 (16)
C5—N2—C8—C15	179.58 (14)	C17—C18—C19—C20	0.3 (3)
C5—N2—C8—C7	2.5 (2)	C18—C19—C20—C21	1.3 (3)
N1—C7—C8—N2	-5.3 (2)	C19—C20—C21—C22	-0.8 (3)
C9—C7—C8—N2	170.89 (15)	C20—C21—C22—C17	-1.3 (3)
N1—C7—C8—C15	177.74 (14)	C18—C17—C22—C21	2.9 (3)
C9—C7—C8—C15	-6.1 (2)	C16—C17—C22—C21	-173.08 (15)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C17–C22 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
$C14$ — $H14$ ··· $Cg2^{i}$	0.94	3.00	3.845 (2)	151

Symmetry code: (i) -x+1, -y, -z+1.