organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(4-Chloro­benzene­sulfonamido)­phenyl­sulfon­yl]acetamide

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 17 May 2012; accepted 22 May 2012; online 26 May 2012)

In the title compound, C14H13ClN2O5S2, the dihedral angles between the central benzene ring and the pendant chloro­benzene ring and the N-acetyl group are 82.35 (5) and 79.71 (6)°, respectively, and the overall conformation of the mol­ecule approximates to a U shape. Both the C—S—N—C conformations are gauche, but with opposite senses [torsion angles = −59.29 (15) and 63.68 (16)°]. An intra­molecular C—H⋯O inter­action generates an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(20) loops. A second N—H⋯O hydrogen bond links the dimers into (101) layers.

Related literature

For related structures, see: Ashfaq et al. (2009[Ashfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.], 2010[Ashfaq, M., Khan, I. U., Arshad, M. N., Ahmad, H. & Asghar, M. N. (2010). Acta Cryst. E66, o299.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13ClN2O5S2

  • Mr = 388.83

  • Monoclinic, P 21 /n

  • a = 9.7452 (2) Å

  • b = 9.9905 (2) Å

  • c = 17.3968 (3) Å

  • β = 99.870 (1)°

  • V = 1668.67 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.823, Tmax = 0.951

  • 15966 measured reflections

  • 4146 independent reflections

  • 3267 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.03

  • 4146 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.85 (2) 1.97 (2) 2.8070 (19) 166 (2)
N2—H2⋯O1ii 0.87 (2) 2.10 (2) 2.9510 (19) 166.3 (19)
C12—H12⋯O2 0.93 2.44 3.074 (2) 126
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing structural studies of sulfonamides (Ashfaq et al., 2009, 2010), the synthesis and structure of the title compound, (I), (Fig. 1), are now described.

The dihedral angle between the central (C7—C12) benzene ring and the pendant (C1—C6) chlorobenzene ring is 82.35 (50)°. The dihedral angle between the central ring and the C13/C14/N2/O5 amide fragment is 79.71 (60)°, and overall, the molecule adpots an approximate U shape. The conformation of the C1—S1—N1—C7 fragment is gauche [-59.29 (15)°], and the torsion angle for C10—S2—N2—C13 of 63.68 (16)° indicates the same thing, but in an opposite sense. The bond-angle sums for N1 and N2 are 351.4 and 360.0°, respectively. An intramolecular C—H···O interaction (Table 1) generates an S(6) ring.

In the crystal, inversion dimers linked by pairs of N—H···O hydrogen bonds generate R22(20) loops (Fig. 2). The other N—H···O hydrogen bonds links the dimers into (101) layers. Centrosymmetric R22(20) loops were also observed in the crystal structures of the related compounds N-acetyl-4-(benzenesulfonamido)-benzenesulfonamide (Ashfaq et al., 2009) and N-[4-(p-toluenesulfonamido)phenylsulfonyl]acetamide (Ashfaq et al., 2010).

Related literature top

For related structures, see: Ashfaq et al. (2009, 2010).

Experimental top

Sodium sulfacetamide (0.236 g, 1.0 mmol) was dissolved in 30 ml distllled water in a 100-ml round bottom flask and the pH was adjusted to 8.0 using Na2CO3 solution (3%). 4-Chlorobenzenesulfonyl chloride (0.422 g, 2.0 mmol) was added and the mixture was stirred at 50 °C for about 5 h. The pH was adjusted to 3.0 using HCl (3 N) and the resulting white precipitate was filtered, washed and dried. Colourless blocks of (I) were recrystallized from methanol solution at room temperature. This compound has been deposited to CSD with CCDC No. 859957.

Refinement top

The N-bound H atoms were located in a difference map and their positions and Uiso values were freely refined. The C-bound hydrogen atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. An inversion dimer in the crystal of (I), which generates an R22(20) loop. Symmetry code: (i) 1–x, –y, 1–z.
N-[4-(4-Chlorobenzenesulfonamido)phenylsulfonyl]acetamide top
Crystal data top
C14H13ClN2O5S2F(000) = 800
Mr = 388.83Dx = 1.548 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5590 reflections
a = 9.7452 (2) Åθ = 2.4–28.1°
b = 9.9905 (2) ŵ = 0.51 mm1
c = 17.3968 (3) ÅT = 296 K
β = 99.870 (1)°Block, colourless
V = 1668.67 (6) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4146 independent reflections
Radiation source: fine-focus sealed tube3267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.823, Tmax = 0.951k = 1313
15966 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difmap (N-H) and geom (C-H)
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.5555P]
where P = (Fo2 + 2Fc2)/3
4146 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H13ClN2O5S2V = 1668.67 (6) Å3
Mr = 388.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7452 (2) ŵ = 0.51 mm1
b = 9.9905 (2) ÅT = 296 K
c = 17.3968 (3) Å0.40 × 0.20 × 0.10 mm
β = 99.870 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4146 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3267 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.951Rint = 0.026
15966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
4146 reflectionsΔρmin = 0.37 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20974 (17)0.33396 (16)0.55613 (9)0.0306 (3)
C20.18774 (18)0.44608 (18)0.50941 (10)0.0368 (4)
H2A0.10780.45300.47180.044*
C30.2851 (2)0.54835 (18)0.51874 (11)0.0415 (4)
H30.27110.62480.48790.050*
C40.40247 (19)0.53498 (18)0.57432 (11)0.0402 (4)
C50.4280 (2)0.4213 (2)0.62017 (11)0.0449 (5)
H50.50950.41350.65660.054*
C60.33066 (19)0.31992 (19)0.61088 (10)0.0393 (4)
H60.34580.24270.64100.047*
C70.21126 (16)0.06282 (15)0.44896 (9)0.0274 (3)
C80.30854 (19)0.03793 (17)0.44559 (10)0.0372 (4)
H80.33330.09500.48790.045*
C90.3684 (2)0.05378 (18)0.38001 (11)0.0404 (4)
H90.43330.12130.37790.048*
C100.33119 (17)0.03193 (16)0.31703 (9)0.0315 (3)
C110.23330 (18)0.13100 (17)0.31958 (10)0.0335 (4)
H110.20840.18750.27700.040*
C120.17231 (17)0.14656 (17)0.38490 (9)0.0332 (4)
H120.10550.21260.38620.040*
C130.65205 (18)0.12228 (19)0.30551 (10)0.0363 (4)
C140.7580 (2)0.2294 (2)0.30576 (12)0.0545 (5)
H14A0.79090.25780.35840.082*
H14B0.71700.30410.27550.082*
H14C0.83470.19550.28350.082*
N10.15644 (15)0.07329 (14)0.51825 (8)0.0311 (3)
H10.202 (2)0.029 (2)0.5560 (13)0.050 (6)*
N20.53926 (15)0.12827 (16)0.24656 (8)0.0345 (3)
H20.531 (2)0.191 (2)0.2111 (12)0.046 (6)*
O10.06025 (14)0.17153 (13)0.62438 (7)0.0432 (3)
O20.03065 (12)0.24552 (13)0.48970 (7)0.0414 (3)
O30.46830 (16)0.11310 (14)0.23297 (9)0.0538 (4)
O40.31838 (14)0.06823 (17)0.16787 (7)0.0557 (4)
O50.66166 (14)0.03331 (15)0.35379 (8)0.0496 (3)
S10.08358 (4)0.20587 (4)0.54746 (2)0.03105 (11)
S20.41012 (5)0.01756 (5)0.23429 (2)0.03680 (12)
Cl10.52276 (6)0.66492 (5)0.58794 (4)0.06056 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (8)0.0310 (8)0.0301 (8)0.0009 (6)0.0061 (7)0.0060 (6)
C20.0343 (9)0.0359 (9)0.0386 (9)0.0022 (7)0.0018 (7)0.0008 (7)
C30.0452 (10)0.0318 (9)0.0481 (11)0.0008 (8)0.0099 (8)0.0002 (8)
C40.0373 (10)0.0349 (9)0.0499 (11)0.0063 (7)0.0119 (8)0.0139 (8)
C50.0354 (10)0.0495 (11)0.0452 (11)0.0022 (8)0.0062 (8)0.0064 (8)
C60.0397 (10)0.0391 (9)0.0368 (9)0.0019 (8)0.0002 (8)0.0023 (7)
C70.0270 (8)0.0265 (7)0.0285 (8)0.0034 (6)0.0041 (6)0.0032 (6)
C80.0440 (10)0.0324 (9)0.0369 (9)0.0080 (8)0.0118 (8)0.0081 (7)
C90.0444 (10)0.0335 (9)0.0462 (10)0.0103 (8)0.0160 (8)0.0034 (7)
C100.0316 (8)0.0331 (8)0.0305 (8)0.0031 (7)0.0075 (7)0.0047 (6)
C110.0358 (9)0.0357 (9)0.0276 (8)0.0016 (7)0.0013 (7)0.0011 (7)
C120.0319 (9)0.0347 (9)0.0322 (8)0.0064 (7)0.0028 (7)0.0001 (7)
C130.0341 (9)0.0478 (10)0.0278 (8)0.0007 (8)0.0072 (7)0.0003 (7)
C140.0464 (12)0.0745 (15)0.0419 (11)0.0209 (11)0.0057 (9)0.0011 (10)
N10.0337 (8)0.0299 (7)0.0298 (7)0.0027 (6)0.0062 (6)0.0004 (6)
N20.0376 (8)0.0401 (8)0.0254 (7)0.0053 (6)0.0040 (6)0.0051 (6)
O10.0490 (8)0.0476 (7)0.0375 (7)0.0043 (6)0.0200 (6)0.0056 (6)
O20.0283 (6)0.0455 (7)0.0485 (7)0.0045 (5)0.0015 (5)0.0062 (6)
O30.0631 (10)0.0419 (8)0.0630 (9)0.0060 (7)0.0300 (7)0.0204 (7)
O40.0457 (8)0.0911 (12)0.0276 (7)0.0079 (8)0.0012 (6)0.0068 (7)
O50.0469 (8)0.0599 (9)0.0397 (7)0.0029 (7)0.0007 (6)0.0163 (6)
S10.0282 (2)0.0340 (2)0.0318 (2)0.00023 (16)0.00766 (16)0.00486 (16)
S20.0377 (2)0.0439 (3)0.0297 (2)0.00666 (19)0.00829 (17)0.01026 (17)
Cl10.0523 (3)0.0466 (3)0.0847 (4)0.0174 (2)0.0175 (3)0.0224 (3)
Geometric parameters (Å, º) top
C1—C21.379 (2)C10—C111.381 (2)
C1—C61.389 (2)C10—S21.7504 (16)
C1—S11.7630 (17)C11—C121.379 (2)
C2—C31.385 (3)C11—H110.9300
C2—H2A0.9300C12—H120.9300
C3—C41.372 (3)C13—O51.215 (2)
C3—H30.9300C13—N21.370 (2)
C4—C51.386 (3)C13—C141.487 (3)
C4—Cl11.7380 (18)C14—H14A0.9600
C5—C61.378 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300N1—S11.6249 (14)
C7—C81.391 (2)N1—H10.85 (2)
C7—C121.393 (2)N2—S21.6615 (15)
C7—N11.404 (2)N2—H20.87 (2)
C8—C91.377 (2)O1—S11.4369 (13)
C8—H80.9300O2—S11.4220 (13)
C9—C101.389 (2)O3—S21.4249 (15)
C9—H90.9300O4—S21.4270 (15)
C2—C1—C6120.93 (16)C10—C11—H11119.8
C2—C1—S1120.23 (13)C11—C12—C7119.66 (15)
C6—C1—S1118.84 (13)C11—C12—H12120.2
C1—C2—C3119.74 (17)C7—C12—H12120.2
C1—C2—H2A120.1O5—C13—N2120.40 (17)
C3—C2—H2A120.1O5—C13—C14123.58 (17)
C4—C3—C2118.85 (17)N2—C13—C14116.01 (16)
C4—C3—H3120.6C13—C14—H14A109.5
C2—C3—H3120.6C13—C14—H14B109.5
C3—C4—C5122.09 (17)H14A—C14—H14B109.5
C3—C4—Cl1119.00 (15)C13—C14—H14C109.5
C5—C4—Cl1118.91 (15)H14A—C14—H14C109.5
C6—C5—C4118.85 (17)H14B—C14—H14C109.5
C6—C5—H5120.6C7—N1—S1125.47 (12)
C4—C5—H5120.6C7—N1—H1113.3 (15)
C5—C6—C1119.49 (17)S1—N1—H1112.5 (15)
C5—C6—H6120.3C13—N2—S2124.05 (13)
C1—C6—H6120.3C13—N2—H2121.7 (14)
C8—C7—C12119.68 (14)S2—N2—H2114.3 (14)
C8—C7—N1116.91 (14)O2—S1—O1119.66 (8)
C12—C7—N1123.41 (14)O2—S1—N1109.71 (8)
C9—C8—C7120.46 (16)O1—S1—N1104.12 (8)
C9—C8—H8119.8O2—S1—C1107.95 (8)
C7—C8—H8119.8O1—S1—C1108.23 (8)
C8—C9—C10119.48 (16)N1—S1—C1106.43 (7)
C8—C9—H9120.3O3—S2—O4120.51 (9)
C10—C9—H9120.3O3—S2—N2108.49 (8)
C11—C10—C9120.35 (15)O4—S2—N2102.91 (8)
C11—C10—S2119.25 (13)O3—S2—C10108.70 (8)
C9—C10—S2120.39 (13)O4—S2—C10109.52 (8)
C12—C11—C10120.35 (16)N2—S2—C10105.64 (8)
C12—C11—H11119.8
C6—C1—C2—C32.2 (3)C12—C7—N1—S121.5 (2)
S1—C1—C2—C3177.56 (13)O5—C13—N2—S21.1 (3)
C1—C2—C3—C40.5 (3)C14—C13—N2—S2178.90 (14)
C2—C3—C4—C51.4 (3)C7—N1—S1—O257.26 (15)
C2—C3—C4—Cl1178.37 (14)C7—N1—S1—O1173.53 (13)
C3—C4—C5—C61.6 (3)C7—N1—S1—C159.29 (15)
Cl1—C4—C5—C6178.15 (14)C2—C1—S1—O21.39 (16)
C4—C5—C6—C10.0 (3)C6—C1—S1—O2178.34 (13)
C2—C1—C6—C51.9 (3)C2—C1—S1—O1132.27 (14)
S1—C1—C6—C5177.80 (14)C6—C1—S1—O147.46 (16)
C12—C7—C8—C91.2 (3)C2—C1—S1—N1116.33 (14)
N1—C7—C8—C9179.22 (16)C6—C1—S1—N163.94 (15)
C7—C8—C9—C100.1 (3)C13—N2—S2—O352.72 (16)
C8—C9—C10—C111.0 (3)C13—N2—S2—O4178.53 (15)
C8—C9—C10—S2177.83 (14)C13—N2—S2—C1063.68 (16)
C9—C10—C11—C120.5 (3)C11—C10—S2—O3160.62 (14)
S2—C10—C11—C12178.32 (13)C9—C10—S2—O320.54 (17)
C10—C11—C12—C70.8 (3)C11—C10—S2—O427.10 (16)
C8—C7—C12—C111.7 (2)C9—C10—S2—O4154.06 (15)
N1—C7—C12—C11178.78 (15)C11—C10—S2—N283.11 (15)
C8—C7—N1—S1159.00 (13)C9—C10—S2—N295.73 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.85 (2)1.97 (2)2.8070 (19)166 (2)
N2—H2···O1ii0.87 (2)2.10 (2)2.9510 (19)166.3 (19)
C12—H12···O20.932.443.074 (2)126
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13ClN2O5S2
Mr388.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.7452 (2), 9.9905 (2), 17.3968 (3)
β (°) 99.870 (1)
V3)1668.67 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.823, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
15966, 4146, 3267
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.03
No. of reflections4146
No. of parameters226
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.85 (2)1.97 (2)2.8070 (19)166 (2)
N2—H2···O1ii0.87 (2)2.10 (2)2.9510 (19)166.3 (19)
C12—H12···O20.932.443.074 (2)126
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

References

First citationAshfaq, M., Khan, I. U., Arshad, M. N., Ahmad, H. & Asghar, M. N. (2010). Acta Cryst. E66, o299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAshfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds