organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Nitro-2-phenyl­chroman

aResearch Center for Engineering Technology of Polymeric Composites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan 030051, People's Republic of China, and bKey Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: zph2004@yahoo.com.cn

(Received 8 May 2012; accepted 8 May 2012; online 16 May 2012)

In the title compound, C15H13NO3, the dihedral angle between the two aromatic rings is 79.25 (16)°.

Related literature

For pharmaceutical and synthetic applications of compounds with a benzopyran framework, see: Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Murugesh et al. (1996[Murugesh, M. G., Subburaj, K. & Trivedi, G. K. (1996). Tetrahedron, 52, 2217-2228.]); Engler et al. (1990[Engler, T. A., Reddy, J. P., Combrink, K. D. & Velde, D. V. (1990). J. Org. Chem. 55, 1248-1254.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO3

  • Mr = 255.26

  • Triclinic, [P \overline 1]

  • a = 5.3769 (11) Å

  • b = 10.105 (2) Å

  • c = 12.320 (3) Å

  • α = 70.85 (3)°

  • β = 82.89 (3)°

  • γ = 84.87 (3)°

  • V = 626.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]) Tmin = 0.981, Tmax = 0.991

  • 5249 measured reflections

  • 2205 independent reflections

  • 912 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.152

  • S = 1.07

  • 2205 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds containing a benzopyran framework have anti-tumour, anti-bacterial and anti-inflammatory activities (Horton et al., 2003). Additionally, they are also useful intermediates in the synthesis of complex natural products (Engler et al.,1990; Murugesh et al., 1996). The title compound, a member of this class of compounds, was synthesised and characterised by X-ray crystallography.

As shown in Fig. 1, the crystal structure determination indicates that the dihedral angle between the two aromatic rings is 79.25 (16)°.

Related literature top

For pharmaceutical and synthetic applications of compounds with a benzopyran framework, see: Horton et al. (2003); Murugesh et al. (1996); Engler et al. (1990).

Experimental top

2-Phenyl-1-nitroethane (10.5 mmol), dimethyl amine hydrochloride (20 mmol), benzaldehyde (10.5 mmol), toluene (7.5 ml) and potassium fluoride (0.08 mmol) were taken in a 50 ml round bottomed flask fitted with a Dean-Stark water separator. The mixture was refluxed with stirring for 10 h. The solvent was removed from the reaction vessel to give a crude product. Chloroform (5 ml) and 0.2 M HCl (10 ml) were added to the crude material and the solution was heated on a water bath at 60 °C for 2 min under reduced pressure. The mixture was extracted with dichloroform. The organic extracts were dried over anhydrous magnesium sulfate. The residue was chromatographed on silica gel by eluting with EtOAc/pet. ether to give the desired product. Crystals of the title compound were obtained by slow evaporation of its dichloromethane/n-hexane solution at room temperature. 1N NMR (400 MHz, CDCl3, TMS): 7.43 (s, 5H), 7.24 (m, 2H), 7.02 (m, 2H), 5.45 (d, 1H, J = 8.0 Hz), 5.08 (m, 1H), 3.69 (dd, 1H, J = 9.2, 16.0 Hz), 3.35 (dd, 1H, J = 9.2, 16.0 Hz) p.p.m.. 13C NMR (100.6 MHz, CDCl3, TMS): 153.3, 135.8, 129.5, 129.4, 129.0, 128.5, 126.9, 122.0, 117.7, 117.0, 84.0, 78.0, 29.8 p.p.m..

Refinement top

The H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
3-Nitro-2-phenylchroman top
Crystal data top
C15H13NO3Z = 2
Mr = 255.26F(000) = 268
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3769 (11) ÅCell parameters from 1554 reflections
b = 10.105 (2) Åθ = 3.5–28.0°
c = 12.320 (3) ŵ = 0.10 mm1
α = 70.85 (3)°T = 293 K
β = 82.89 (3)°Prism, colourless
γ = 84.87 (3)°0.20 × 0.20 × 0.10 mm
V = 626.6 (2) Å3
Data collection top
Rigaku Saturn
diffractometer
2205 independent reflections
Radiation source: rotating anode912 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.053
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 66
Tmin = 0.981, Tmax = 0.991k = 1110
5249 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0551P)2]
where P = (Fo2 + 2Fc2)/3
2205 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H13NO3γ = 84.87 (3)°
Mr = 255.26V = 626.6 (2) Å3
Triclinic, P1Z = 2
a = 5.3769 (11) ÅMo Kα radiation
b = 10.105 (2) ŵ = 0.10 mm1
c = 12.320 (3) ÅT = 293 K
α = 70.85 (3)°0.20 × 0.20 × 0.10 mm
β = 82.89 (3)°
Data collection top
Rigaku Saturn
diffractometer
2205 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
912 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.053
5249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
2205 reflectionsΔρmin = 0.31 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1296 (3)0.85831 (18)0.15383 (15)0.0443 (5)
O20.6208 (5)0.6744 (3)0.4385 (2)0.0835 (8)
O30.2445 (5)0.6648 (3)0.5113 (2)0.0841 (9)
N10.4007 (6)0.6773 (2)0.4307 (2)0.0491 (7)
C10.0165 (5)0.7495 (3)0.1373 (2)0.0399 (7)
C20.1198 (6)0.7845 (3)0.0429 (2)0.0512 (8)
H20.13010.87660.00600.061*
C30.2397 (6)0.6827 (4)0.0218 (3)0.0644 (10)
H30.33320.70580.04120.077*
C40.2215 (7)0.5453 (3)0.0943 (3)0.0667 (10)
H40.30320.47590.08050.080*
C50.0821 (6)0.5123 (3)0.1865 (3)0.0542 (9)
H50.06920.41970.23440.065*
C60.0406 (5)0.6137 (3)0.2101 (2)0.0401 (7)
C70.1895 (5)0.5749 (3)0.3130 (2)0.0456 (8)
H7A0.07800.54140.38340.055*
H7B0.31270.49980.30970.055*
C80.3187 (7)0.6980 (3)0.3148 (3)0.0594 (9)
H80.47340.70180.26290.071*
C90.1824 (7)0.8331 (3)0.2685 (3)0.0637 (10)
H90.01980.82680.31510.076*
C100.3006 (6)0.9590 (3)0.2757 (3)0.0467 (8)
C110.1942 (6)1.0227 (3)0.3531 (3)0.0658 (10)
H110.04620.98990.39780.079*
C120.3002 (8)1.1345 (4)0.3669 (3)0.0782 (12)
H120.22481.17640.42050.094*
C130.5127 (7)1.1822 (3)0.3026 (3)0.0679 (11)
H130.58661.25670.31250.081*
C140.6212 (6)1.1230 (4)0.2231 (3)0.0676 (10)
H140.76741.15770.17780.081*
C150.5138 (7)1.0110 (3)0.2099 (3)0.0606 (9)
H150.58820.97060.15520.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0569 (13)0.0382 (11)0.0365 (11)0.0084 (10)0.0131 (10)0.0056 (9)
O20.0496 (16)0.101 (2)0.094 (2)0.0026 (13)0.0252 (15)0.0196 (15)
O30.094 (2)0.103 (2)0.0542 (15)0.0355 (16)0.0116 (15)0.0226 (14)
N10.0566 (19)0.0415 (15)0.0463 (17)0.0090 (13)0.0147 (15)0.0052 (12)
C10.0473 (18)0.0380 (17)0.0373 (17)0.0044 (14)0.0070 (14)0.0143 (14)
C20.070 (2)0.0444 (17)0.0413 (18)0.0029 (16)0.0167 (16)0.0128 (15)
C30.083 (3)0.066 (2)0.052 (2)0.006 (2)0.0293 (19)0.0204 (19)
C40.087 (3)0.058 (2)0.069 (2)0.0154 (19)0.028 (2)0.0283 (19)
C50.067 (2)0.0424 (18)0.053 (2)0.0135 (16)0.0101 (18)0.0110 (15)
C60.0431 (18)0.0395 (16)0.0384 (17)0.0048 (14)0.0057 (14)0.0120 (14)
C70.0541 (19)0.0345 (16)0.0472 (18)0.0075 (14)0.0133 (15)0.0074 (14)
C80.084 (3)0.048 (2)0.049 (2)0.0038 (18)0.0345 (18)0.0092 (16)
C90.097 (3)0.045 (2)0.051 (2)0.0102 (19)0.032 (2)0.0076 (16)
C100.060 (2)0.0340 (16)0.0442 (18)0.0099 (16)0.0170 (17)0.0037 (14)
C110.061 (2)0.065 (2)0.070 (2)0.0217 (19)0.008 (2)0.019 (2)
C120.106 (3)0.064 (2)0.072 (3)0.022 (2)0.012 (2)0.034 (2)
C130.082 (3)0.056 (2)0.071 (2)0.027 (2)0.018 (2)0.018 (2)
C140.046 (2)0.068 (2)0.081 (3)0.0128 (19)0.003 (2)0.013 (2)
C150.074 (3)0.049 (2)0.060 (2)0.0029 (19)0.003 (2)0.0217 (17)
Geometric parameters (Å, º) top
O1—C11.385 (3)C7—H7A0.9700
O1—C91.411 (3)C7—H7B0.9700
O2—N11.196 (3)C8—C91.463 (4)
O3—N11.199 (3)C8—H80.9800
N1—C81.490 (3)C9—C101.505 (4)
C1—C61.376 (4)C9—H90.9800
C1—C21.381 (4)C10—C151.359 (4)
C2—C31.370 (4)C10—C111.361 (4)
C2—H20.9300C11—C121.376 (4)
C3—C41.385 (4)C11—H110.9300
C3—H30.9300C12—C131.338 (5)
C4—C51.371 (4)C12—H120.9300
C4—H40.9300C13—C141.356 (5)
C5—C61.391 (4)C13—H130.9300
C5—H50.9300C14—C151.379 (4)
C6—C71.507 (4)C14—H140.9300
C7—C81.486 (4)C15—H150.9300
C1—O1—C9114.2 (2)C9—C8—N1112.6 (3)
O2—N1—O3123.1 (3)C7—C8—N1111.7 (2)
O2—N1—C8118.0 (3)C9—C8—H8105.7
O3—N1—C8118.9 (3)C7—C8—H8105.7
C6—C1—C2121.8 (3)N1—C8—H8105.7
C6—C1—O1121.8 (2)O1—C9—C8112.2 (2)
C2—C1—O1116.3 (3)O1—C9—C10109.2 (2)
C3—C2—C1119.7 (3)C8—C9—C10116.0 (3)
C3—C2—H2120.2O1—C9—H9106.3
C1—C2—H2120.2C8—C9—H9106.3
C2—C3—C4119.9 (3)C10—C9—H9106.3
C2—C3—H3120.1C15—C10—C11117.9 (3)
C4—C3—H3120.1C15—C10—C9122.9 (3)
C5—C4—C3119.6 (3)C11—C10—C9119.2 (3)
C5—C4—H4120.2C10—C11—C12121.6 (3)
C3—C4—H4120.2C10—C11—H11119.2
C4—C5—C6121.7 (3)C12—C11—H11119.2
C4—C5—H5119.2C13—C12—C11119.4 (3)
C6—C5—H5119.2C13—C12—H12120.3
C1—C6—C5117.4 (3)C11—C12—H12120.3
C1—C6—C7122.1 (2)C12—C13—C14120.6 (3)
C5—C6—C7120.6 (3)C12—C13—H13119.7
C8—C7—C6110.6 (2)C14—C13—H13119.7
C8—C7—H7A109.5C13—C14—C15119.7 (3)
C6—C7—H7A109.5C13—C14—H14120.2
C8—C7—H7B109.5C15—C14—H14120.2
C6—C7—H7B109.5C10—C15—C14120.8 (3)
H7A—C7—H7B108.1C10—C15—H15119.6
C9—C8—C7114.6 (3)C14—C15—H15119.6
C9—O1—C1—C623.5 (4)O3—N1—C8—C763.3 (4)
C9—O1—C1—C2157.1 (3)C1—O1—C9—C850.9 (4)
C6—C1—C2—C31.4 (4)C1—O1—C9—C10179.1 (2)
O1—C1—C2—C3179.2 (3)C7—C8—C9—O157.3 (4)
C1—C2—C3—C40.7 (5)N1—C8—C9—O1173.5 (3)
C2—C3—C4—C50.3 (5)C7—C8—C9—C10176.4 (3)
C3—C4—C5—C60.6 (5)N1—C8—C9—C1047.2 (4)
C2—C1—C6—C51.1 (4)O1—C9—C10—C1557.1 (4)
O1—C1—C6—C5179.5 (2)C8—C9—C10—C1570.7 (4)
C2—C1—C6—C7179.9 (3)O1—C9—C10—C11124.4 (3)
O1—C1—C6—C70.5 (4)C8—C9—C10—C11107.8 (4)
C4—C5—C6—C10.1 (4)C15—C10—C11—C121.4 (5)
C4—C5—C6—C7179.1 (3)C9—C10—C11—C12177.2 (3)
C1—C6—C7—C85.5 (4)C10—C11—C12—C130.2 (6)
C5—C6—C7—C8175.5 (3)C11—C12—C13—C141.1 (6)
C6—C7—C8—C932.9 (4)C12—C13—C14—C151.1 (6)
C6—C7—C8—N1162.5 (3)C11—C10—C15—C141.4 (5)
O2—N1—C8—C9112.4 (3)C9—C10—C15—C14177.2 (3)
O3—N1—C8—C967.4 (4)C13—C14—C15—C100.1 (5)
O2—N1—C8—C7116.9 (3)

Experimental details

Crystal data
Chemical formulaC15H13NO3
Mr255.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.3769 (11), 10.105 (2), 12.320 (3)
α, β, γ (°)70.85 (3), 82.89 (3), 84.87 (3)
V3)626.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5249, 2205, 912
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.152, 1.07
No. of reflections2205
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.31

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Start-up Foundation of North University of China and the Youth Foundation of North University of China.

References

First citationEngler, T. A., Reddy, J. P., Combrink, K. D. & Velde, D. V. (1990). J. Org. Chem. 55, 1248–1254.  CrossRef CAS Web of Science Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurugesh, M. G., Subburaj, K. & Trivedi, G. K. (1996). Tetrahedron, 52, 2217–2228.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds