organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Nitro-2-phenylchroman

Pei-Hua Zhao,^a* Er-Jun Hao,^b Ya-Qing Liu^a and Gui-Zhe **Zhao**^a

^aResearch Center for Engineering Technology of Polymeric Composites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan 030051, People's Republic of China, and ^bKey Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China

Correspondence e-mail: zph2004@yahoo.com.cn

Received 8 May 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.055; wR factor = 0.152; data-to-parameter ratio = 12.8.

In the title compound, $C_{15}H_{13}NO_3$, the dihedral angle between the two aromatic rings is $79.25 (16)^{\circ}$.

Related literature

For pharmaceutical and synthetic applications of compounds with a benzopyran framework, see: Horton et al. (2003); Murugesh et al. (1996); Engler et al. (1990).

Experimental

Crystal data C15H13NO3

 $M_r = 255.26$

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) $T_{\min} = 0.981, T_{\max} = 0.991$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	172 parameters
wR(F^2) = 0.152	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.47$ e Å ⁻³
2205 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

5249 measured reflections

 $R_{\rm int} = 0.053$

2205 independent reflections

912 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by the Start-up Foundation of North University of China and the Youth Foundation of North University of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5093).

References

Engler, T. A., Reddy, J. P., Combrink, K. D. & Velde, D. V. (1990). J. Org. Chem. 55, 1248-1254.

Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930. Murugesh, M. G., Subburaj, K. & Trivedi, G. K. (1996). Tetrahedron, 52, 2217-2228

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o1742 [doi:10.1107/S1600536812020806]

3-Nitro-2-phenylchroman

Pei-Hua Zhao, Er-Jun Hao, Ya-Qing Liu and Gui-Zhe Zhao

S1. Comment

Compounds containing a benzopyran framework have anti-tumour, anti-bacterial and anti-inflammatory activities (Horton *et al.*, 2003). Additionally, they are also useful intermediates in the synthesis of complex natural products (Engler *et al.*, 1990; Murugesh *et al.*, 1996). The title compound, a member of this class of compounds, was synthesised and characterised by X-ray crystallography.

As shown in Fig. 1, the crystal structure determination indicates that the dihedral angle between the two aromatic rings is 79.25 (16)°.

S2. Experimental

2-Phenyl-1-nitroethane (10.5 mmol), dimethyl amine hydrochloride (20 mmol), benzaldehyde (10.5 mmol), toluene (7.5 ml) and potassium fluoride (0.08 mmol) were taken in a 50 ml round bottomed flask fitted with a Dean-Stark water separator. The mixture was refluxed with stirring for 10 h. The solvent was removed from the reaction vessel to give a crude product. Chloroform (5 ml) and 0.2 *M* HCl (10 ml) were added to the crude material and the solution was heated on a water bath at 60 °C for 2 min under reduced pressure. The mixture was extracted with dichloroform. The organic extracts were dried over anhydrous magnesium sulfate. The residue was chromatographed on silica gel by eluting with EtOAc/pet. ether to give the desired product. Crystals of the title compound were obtained by slow evaporation of its dichloromethane/n-hexane solution at room temperature. ¹N NMR (400 MHz, CDCl₃, TMS): 7.43 (s, 5H), 7.24 (m, 2H), 7.02 (m, 2H), 5.45 (d, 1H, J = 8.0 Hz), 5.08 (m, 1H), 3.69 (dd, 1H, J = 9.2, 16.0 Hz), 3.35 (dd, 1H, J = 9.2, 16.0 Hz) p.p.m.. ¹³C NMR (100.6 MHz, CDCl₃, TMS): 153.3, 135.8, 129.5, 129.4, 129.0, 128.5, 126.9, 122.0, 117.7, 117.0, 84.0, 78.0, 29.8 p.p.m..

S3. Refinement

The H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

3-Nitro-2-phenylchroman

Crystal data

C₁₅H₁₃NO₃ $M_r = 255.26$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.3769 (11) Å b = 10.105 (2) Å c = 12.320 (3) Å a = 70.85 (3)° $\beta = 82.89$ (3)° $\gamma = 84.87$ (3)° V = 626.6 (2) Å³

Data collection

Rigaku Saturn diffractometer Radiation source: rotating anode Confocal monochromator ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\min} = 0.981, T_{\max} = 0.991$ Z = 2 F(000) = 268 $D_x = 1.353 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1554 reflections $\theta = 3.5-28.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K Prism, colourless $0.20 \times 0.20 \times 0.10 \text{ mm}$

5249 measured reflections 2205 independent reflections 912 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 3.2^\circ$ $h = -6 \rightarrow 6$ $k = -11 \rightarrow 10$ $l = -14 \rightarrow 14$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.152$	neighbouring sites
S = 1.07	H-atom parameters constrained
2205 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0551P)^2]$
172 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.1296 (3)	0.85831 (18)	0.15383 (15)	0.0443 (5)
O2	0.6208 (5)	0.6744 (3)	0.4385 (2)	0.0835 (8)
O3	0.2445 (5)	0.6648 (3)	0.5113 (2)	0.0841 (9)
N1	0.4007 (6)	0.6773 (2)	0.4307 (2)	0.0491 (7)
C1	0.0165 (5)	0.7495 (3)	0.1373 (2)	0.0399 (7)
C2	-0.1198 (6)	0.7845 (3)	0.0429 (2)	0.0512 (8)
H2	-0.1301	0.8766	-0.0060	0.061*
C3	-0.2397 (6)	0.6827 (4)	0.0218 (3)	0.0644 (10)
H3	-0.3332	0.7058	-0.0412	0.077*
C4	-0.2215 (7)	0.5453 (3)	0.0943 (3)	0.0667 (10)
H4	-0.3032	0.4759	0.0805	0.080*
C5	-0.0821 (6)	0.5123 (3)	0.1865 (3)	0.0542 (9)
Н5	-0.0692	0.4197	0.2344	0.065*
C6	0.0406 (5)	0.6137 (3)	0.2101 (2)	0.0401 (7)
C7	0.1895 (5)	0.5749 (3)	0.3130 (2)	0.0456 (8)
H7A	0.0780	0.5414	0.3834	0.055*
H7B	0.3127	0.4998	0.3097	0.055*
C8	0.3187 (7)	0.6980 (3)	0.3148 (3)	0.0594 (9)
H8	0.4734	0.7018	0.2629	0.071*
C9	0.1824 (7)	0.8331 (3)	0.2685 (3)	0.0637 (10)
H9	0.0198	0.8268	0.3151	0.076*
C10	0.3006 (6)	0.9590 (3)	0.2757 (3)	0.0467 (8)
C11	0.1942 (6)	1.0227 (3)	0.3531 (3)	0.0658 (10)
H11	0.0462	0.9899	0.3978	0.079*
C12	0.3002 (8)	1.1345 (4)	0.3669 (3)	0.0782 (12)

supporting information

0.2248	1.1764	0.4205	0.094*
0.5127 (7)	1.1822 (3)	0.3026 (3)	0.0679 (11)
0.5866	1.2567	0.3125	0.081*
0.6212 (6)	1.1230 (4)	0.2231 (3)	0.0676 (10)
0.7674	1.1577	0.1778	0.081*
0.5138 (7)	1.0110 (3)	0.2099 (3)	0.0606 (9)
0.5882	0.9706	0.1552	0.073*
	0.2248 0.5127 (7) 0.5866 0.6212 (6) 0.7674 0.5138 (7) 0.5882	0.22481.17640.5127 (7)1.1822 (3)0.58661.25670.6212 (6)1.1230 (4)0.76741.15770.5138 (7)1.0110 (3)0.58820.9706	0.22481.17640.42050.5127 (7)1.1822 (3)0.3026 (3)0.58661.25670.31250.6212 (6)1.1230 (4)0.2231 (3)0.76741.15770.17780.5138 (7)1.0110 (3)0.2099 (3)0.58820.97060.1552

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0569 (13)	0.0382 (11)	0.0365 (11)	-0.0084 (10)	-0.0131 (10)	-0.0056 (9)
O2	0.0496 (16)	0.101 (2)	0.094 (2)	0.0026 (13)	-0.0252 (15)	-0.0196 (15)
03	0.094 (2)	0.103 (2)	0.0542 (15)	-0.0355 (16)	0.0116 (15)	-0.0226 (14)
N1	0.0566 (19)	0.0415 (15)	0.0463 (17)	-0.0090 (13)	-0.0147 (15)	-0.0052 (12)
C1	0.0473 (18)	0.0380 (17)	0.0373 (17)	-0.0044 (14)	-0.0070 (14)	-0.0143 (14)
C2	0.070 (2)	0.0444 (17)	0.0413 (18)	-0.0029 (16)	-0.0167 (16)	-0.0128 (15)
C3	0.083 (3)	0.066 (2)	0.052 (2)	-0.006 (2)	-0.0293 (19)	-0.0204 (19)
C4	0.087 (3)	0.058 (2)	0.069 (2)	-0.0154 (19)	-0.028 (2)	-0.0283 (19)
C5	0.067 (2)	0.0424 (18)	0.053 (2)	-0.0135 (16)	-0.0101 (18)	-0.0110 (15)
C6	0.0431 (18)	0.0395 (16)	0.0384 (17)	-0.0048 (14)	-0.0057 (14)	-0.0120 (14)
C7	0.0541 (19)	0.0345 (16)	0.0472 (18)	-0.0075 (14)	-0.0133 (15)	-0.0074 (14)
C8	0.084 (3)	0.048 (2)	0.049 (2)	-0.0038 (18)	-0.0345 (18)	-0.0092 (16)
C9	0.097 (3)	0.045 (2)	0.051 (2)	-0.0102 (19)	-0.032 (2)	-0.0076 (16)
C10	0.060 (2)	0.0340 (16)	0.0442 (18)	-0.0099 (16)	-0.0170 (17)	-0.0037 (14)
C11	0.061 (2)	0.065 (2)	0.070 (2)	-0.0217 (19)	0.008 (2)	-0.019 (2)
C12	0.106 (3)	0.064 (2)	0.072 (3)	-0.022 (2)	0.012 (2)	-0.034 (2)
C13	0.082 (3)	0.056 (2)	0.071 (2)	-0.027 (2)	-0.018 (2)	-0.018 (2)
C14	0.046 (2)	0.068 (2)	0.081 (3)	-0.0128 (19)	-0.003 (2)	-0.013 (2)
C15	0.074 (3)	0.049 (2)	0.060 (2)	0.0029 (19)	-0.003 (2)	-0.0217 (17)

Geometric parameters (Å, °)

01—C1	1.385 (3)	С7—Н7А	0.9700
O1—C9	1.411 (3)	C7—H7B	0.9700
O2—N1	1.196 (3)	C8—C9	1.463 (4)
O3—N1	1.199 (3)	C8—H8	0.9800
N1—C8	1.490 (3)	C9—C10	1.505 (4)
C1—C6	1.376 (4)	С9—Н9	0.9800
C1—C2	1.381 (4)	C10—C15	1.359 (4)
C2—C3	1.370 (4)	C10—C11	1.361 (4)
C2—H2	0.9300	C11—C12	1.376 (4)
C3—C4	1.385 (4)	C11—H11	0.9300
С3—Н3	0.9300	C12—C13	1.338 (5)
C4—C5	1.371 (4)	C12—H12	0.9300
C4—H4	0.9300	C13—C14	1.356 (5)
C5—C6	1.391 (4)	C13—H13	0.9300
С5—Н5	0.9300	C14—C15	1.379 (4)

C6—C7	1.507 (4)	C14—H14	0.9300
С7—С8	1.486 (4)	C15—H15	0.9300
C1—O1—C9	114.2 (2)	C9—C8—N1	112.6 (3)
O2—N1—O3	123.1 (3)	C7—C8—N1	111.7 (2)
O2—N1—C8	118.0 (3)	С9—С8—Н8	105.7
O3—N1—C8	118.9 (3)	С7—С8—Н8	105.7
C6—C1—C2	121.8 (3)	N1—C8—H8	105.7
C6—C1—O1	121.8 (2)	O1—C9—C8	112.2 (2)
C2-C1-O1	116.3 (3)	O1—C9—C10	109.2 (2)
C3—C2—C1	119.7 (3)	C8—C9—C10	116.0 (3)
С3—С2—Н2	120.2	01—С9—Н9	106.3
С1—С2—Н2	120.2	С8—С9—Н9	106.3
C2—C3—C4	119.9 (3)	С10—С9—Н9	106.3
С2—С3—Н3	120.1	C15—C10—C11	117.9 (3)
С4—С3—Н3	120.1	C15—C10—C9	122.9 (3)
C5—C4—C3	119.6 (3)	C11—C10—C9	119.2 (3)
C5—C4—H4	120.2	C10-C11-C12	121.6 (3)
C3—C4—H4	120.2	C10-C11-H11	119.2
C4—C5—C6	121.7 (3)	C12—C11—H11	119.2
C4—C5—H5	119.2	C13—C12—C11	119.4 (3)
С6—С5—Н5	119.2	C13—C12—H12	120.3
C1—C6—C5	117.4 (3)	C11—C12—H12	120.3
C1—C6—C7	122.1 (2)	C12—C13—C14	120.6 (3)
C5—C6—C7	120.6 (3)	C12—C13—H13	119.7
C8—C7—C6	110.6 (2)	C14—C13—H13	119.7
С8—С7—Н7А	109.5	C13—C14—C15	119.7 (3)
С6—С7—Н7А	109.5	C13—C14—H14	120.2
С8—С7—Н7В	109.5	C15—C14—H14	120.2
С6—С7—Н7В	109.5	C10-C15-C14	120.8 (3)
H7A—C7—H7B	108.1	C10-C15-H15	119.6
C9—C8—C7	114.6 (3)	C14—C15—H15	119.6
C9—O1—C1—C6	-23.5 (4)	O3—N1—C8—C7	-63.3 (4)
C9-01-C1-C2	157.1 (3)	C1—O1—C9—C8	50.9 (4)
C6—C1—C2—C3	1.4 (4)	C1	-179.1 (2)
O1—C1—C2—C3	-179.2 (3)	C7—C8—C9—O1	-57.3 (4)
C1—C2—C3—C4	-0.7 (5)	N1-C8-C9-O1	173.5 (3)
C2—C3—C4—C5	-0.3 (5)	C7—C8—C9—C10	176.4 (3)
C3—C4—C5—C6	0.6 (5)	N1-C8-C9-C10	47.2 (4)
C2-C1-C6-C5	-1.1 (4)	O1—C9—C10—C15	-57.1 (4)
O1—C1—C6—C5	179.5 (2)	C8—C9—C10—C15	70.7 (4)
C2-C1-C6-C7	179.9 (3)	O1-C9-C10-C11	124.4 (3)
O1—C1—C6—C7	0.5 (4)	C8—C9—C10—C11	-107.8 (4)
C4—C5—C6—C1	0.1 (4)	C15—C10—C11—C12	-1.4 (5)
C4—C5—C6—C7	179.1 (3)	C9—C10—C11—C12	177.2 (3)
C1—C6—C7—C8	-5.5 (4)	C10—C11—C12—C13	0.2 (6)
C5—C6—C7—C8	175.5 (3)	C11—C12—C13—C14	1.1 (6)

C6—C7—C8—C9	32.9 (4)	C12—C13—C14—C15	-1.1 (6)
C6—C7—C8—N1	162.5 (3)	C11-C10-C15-C14	1.4 (5)
O2—N1—C8—C9	-112.4 (3)	C9—C10—C15—C14	-177.2 (3)
O3—N1—C8—C9	67.4 (4)	C13—C14—C15—C10	-0.1 (5)
O2—N1—C8—C7	116.9 (3)		