organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-7,8,9,10-tetra­hydro­cyclo­hepta­[b]indol-6(5H)-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, dSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, MP, India, eChemistry Department, Howard University, Washington, DC 20059, USA, and fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 18 May 2012; accepted 19 May 2012; online 26 May 2012)

In the title mol­ecule, C13H12ClNO, the dihedral angle between the benzene and pyrrole rings is 1.38 (9)°. The cyclo­heptene ring adopts a distorted twist chair and sofa conformation. Inter­molecular N—H⋯O hydrogen bonds form an R22(10) loop in the crystal packing. Further, weak C—H⋯O and C—H⋯π (involving the benzene ring) inter­actions are found in the crystal structure.

Related literature

For the biological activity of indole derivatives, see: Gribble (2000[Gribble, G. W. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1045-1075.]); Knölker & Reddy (2002[Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4428.]); Kawasaki & Higuchi (2005[Kawasaki, T. & Higuchi, K. (2005). Nat. Prod. Rep. 22, 761-793.]); Bennasar et al. (1993[Bennasar, M.-L., Vidal, B. & Bosch, J. (1993). J. Am. Chem. Soc. 115, 5340-5341.]); Hong et al. (2006[Hong, B.-C., Jiang, Y.-F., Chang, Y.-L. & Lee, S.-J. (2006). J. Chin. Chem. Soc. 53, 647-662.]); Lacoume et al. (1972[Lacoume, B., Milcent, G. & Olivier, A. (1972). Tetrahedron, 28, 667-674.]); Joseph et al. (1998[Joseph, B., Cornec, O. & Mérour, J.-Y. (1998). Tetrahedron, 54, 7765-7776.], 2000[Joseph, B., Alagille, D., Mérour, J.-Y. & Léonce, S. (2000). Chem. Pharm. Bull. 48, 1872-1876.]). For related crystallographic studies of cyclo­hept[b]indoles, see: Archana et al. (2010[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2882.], 2011[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1325.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12ClNO

  • Mr = 233.69

  • Monoclinic, P 21 /n

  • a = 11.6354 (4) Å

  • b = 6.3798 (2) Å

  • c = 14.4513 (5) Å

  • β = 92.767 (3)°

  • V = 1071.49 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 150 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.879, Tmax = 0.907

  • 4977 measured reflections

  • 2274 independent reflections

  • 1836 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.04

  • 2274 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C4,C4A,C10B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O6i 0.837 (19) 2.13 (2) 2.904 (2) 153.2 (19)
C9—H9A⋯O6ii 0.99 2.55 3.228 (2) 125
C7—H7ACg2iii 0.99 2.95 3.7969 (19) 144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

An indole nucleus coupled with prenylated indoles, carbazoles, indoloquinoline and cyclohept[b]indole alkaloids show high levels of biological activities including anti-fungal, anti-bacterial, anti-tumour and anti-HIV activities, as well as DNA interaction properties (Gribble, 2000; Knölker & Reddy, 2002; Kawasaki & Higuchi, 2005; Bennasar et al., 1993; Hong et al., 2006; Lacoume et al., 1972; Joseph et al., 1998; Joseph et al., 2000). Recently, we reported related crystallographic studies for some cyclohept[b]indoles from our laboratory (Archana et al., 2010; Archana et al., 2011).

In the title molecule, Fig. 1, the dihedral angle between the benzene and pyrrole rings is 1.38 (9)°. The cycloheptene ring adopts a distorted twist chair and sofa conformation. Intermolecular N5—H5···O6 hydrogen bonds form a R22(10) (Bernstein et al., 1995) rings in the crystal structure. A weak C9—H9A···O6 intermolecular hydrogen bond along with a C7—H7A···π interaction, involving the benzene (C1–C4,C4A,C10B) ring, are also found in the crystal structure, Fig. 2 and Table 1.

Related literature top

For the biological activity of indole derivatives, see: Gribble (2000); Knölker & Reddy (2002); Kawasaki & Higuchi (2005); Bennasar et al. (1993); Hong et al. (2006); Lacoume et al. (1972); Joseph et al. (1998, 2000). For related crystallographic studies of cyclohept[b]indoles, see: Archana et al. (2010, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 2-(2-(4-chlorophenyl)hydrazono)cycloheptanone (0.486 g, 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398 K for 2 h. The contents were then cooled and poured onto cold water with stirring. The brown solid which was separated by passing through a column of silica gel and eluted with (98:2, v/v) petroleum ether-ethyl acetate mixture yielded the title compound (0.167 g, 72%). This was recrystallized from ethanol.

Refinement top

The N—H atom was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal structure of (I), viewed down the b axis, showing the formation of a R22(10) ring by N—H···O hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
2-Chloro-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one top
Crystal data top
C13H12ClNOF(000) = 488
Mr = 233.69Dx = 1.449 Mg m3
Monoclinic, P21/nMelting point: 389 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.6354 (4) ÅCell parameters from 2495 reflections
b = 6.3798 (2) Åθ = 3.2–28.4°
c = 14.4513 (5) ŵ = 0.33 mm1
β = 92.767 (3)°T = 150 K
V = 1071.49 (6) Å3Block, colourless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2274 independent reflections
Radiation source: Enhance (Mo) X-ray Source1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.5081 pixels mm-1θmax = 28.4°, θmin = 3.5°
ω scansh = 1415
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
k = 87
Tmin = 0.879, Tmax = 0.907l = 1219
4977 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4689P]
where P = (Fo2 + 2Fc2)/3
2274 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H12ClNOV = 1071.49 (6) Å3
Mr = 233.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6354 (4) ŵ = 0.33 mm1
b = 6.3798 (2) ÅT = 150 K
c = 14.4513 (5) Å0.40 × 0.30 × 0.30 mm
β = 92.767 (3)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2274 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
1836 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.907Rint = 0.026
4977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
2274 reflectionsΔρmin = 0.26 e Å3
149 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.59361 (4)0.24239 (8)0.08648 (3)0.0357 (2)
O60.57812 (10)0.3697 (2)0.60006 (8)0.0280 (4)
N50.56976 (12)0.2648 (3)0.42004 (10)0.0225 (5)
C10.63668 (14)0.1524 (3)0.26774 (12)0.0244 (5)
C20.58717 (14)0.0838 (3)0.18511 (12)0.0262 (5)
C30.53084 (14)0.1108 (3)0.17503 (12)0.0275 (6)
C40.52189 (15)0.2416 (3)0.24985 (12)0.0256 (5)
C4A0.56937 (14)0.1720 (3)0.33521 (12)0.0223 (5)
C5A0.62720 (14)0.1378 (3)0.48468 (11)0.0211 (5)
C60.63461 (14)0.2152 (3)0.58029 (12)0.0229 (5)
C70.71201 (15)0.1148 (3)0.65476 (12)0.0273 (5)
C80.80230 (15)0.0440 (3)0.62766 (12)0.0258 (5)
C90.75353 (15)0.2421 (3)0.58213 (12)0.0254 (5)
C100.73457 (16)0.2246 (3)0.47726 (12)0.0254 (5)
C10A0.66477 (13)0.0419 (3)0.44109 (12)0.0214 (5)
C10B0.62718 (14)0.0218 (3)0.34549 (12)0.0220 (5)
H10.675830.282930.272280.0293*
H30.498820.151970.116090.0330*
H40.484920.373980.243880.0307*
H50.5389 (17)0.380 (3)0.4311 (14)0.031 (6)*
H7A0.661920.044810.698800.0328*
H7B0.752700.229110.689160.0328*
H8A0.854310.024200.584550.0309*
H8B0.849080.084110.683930.0309*
H9A0.679220.275580.609290.0305*
H9B0.806880.359800.596470.0305*
H10A0.810890.218210.449920.0305*
H10B0.696530.354770.454480.0305*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0376 (3)0.0460 (3)0.0233 (2)0.0078 (2)0.0001 (2)0.0094 (2)
O60.0322 (7)0.0244 (7)0.0275 (7)0.0012 (5)0.0032 (5)0.0036 (6)
N50.0242 (8)0.0205 (8)0.0229 (8)0.0027 (7)0.0009 (6)0.0004 (7)
C10.0213 (8)0.0259 (9)0.0261 (9)0.0005 (8)0.0008 (7)0.0003 (8)
C20.0241 (9)0.0336 (10)0.0209 (9)0.0007 (8)0.0026 (7)0.0058 (8)
C30.0219 (9)0.0382 (11)0.0222 (9)0.0016 (8)0.0002 (7)0.0042 (8)
C40.0231 (8)0.0269 (10)0.0267 (9)0.0039 (8)0.0013 (7)0.0035 (8)
C4A0.0182 (8)0.0245 (9)0.0242 (9)0.0027 (7)0.0016 (7)0.0005 (8)
C5A0.0187 (8)0.0209 (9)0.0235 (8)0.0033 (7)0.0003 (6)0.0007 (7)
C60.0224 (8)0.0220 (9)0.0245 (9)0.0069 (7)0.0031 (7)0.0008 (7)
C70.0322 (9)0.0287 (10)0.0208 (9)0.0034 (8)0.0011 (7)0.0004 (8)
C80.0255 (9)0.0280 (10)0.0234 (9)0.0028 (8)0.0037 (7)0.0025 (8)
C90.0259 (9)0.0229 (9)0.0269 (9)0.0003 (7)0.0039 (8)0.0035 (8)
C100.0272 (9)0.0222 (9)0.0265 (9)0.0021 (7)0.0023 (7)0.0013 (8)
C10A0.0175 (8)0.0236 (9)0.0230 (9)0.0036 (7)0.0005 (6)0.0005 (7)
C10B0.0177 (8)0.0244 (9)0.0238 (8)0.0024 (7)0.0009 (7)0.0002 (8)
Geometric parameters (Å, º) top
Cl2—C21.7525 (19)C8—C91.522 (3)
O6—C61.226 (2)C9—C101.525 (2)
N5—C4A1.361 (2)C10—C10A1.500 (3)
N5—C5A1.384 (2)C10A—C10B1.435 (2)
N5—H50.837 (19)C1—H10.9500
C1—C10B1.407 (3)C3—H30.9500
C1—C21.372 (2)C4—H40.9500
C2—C31.408 (3)C7—H7A0.9900
C3—C41.374 (3)C7—H7B0.9900
C4—C4A1.399 (2)C8—H8A0.9900
C4A—C10B1.412 (3)C8—H8B0.9900
C5A—C61.466 (2)C9—H9A0.9900
C5A—C10A1.389 (3)C9—H9B0.9900
C6—C71.512 (2)C10—H10A0.9900
C7—C81.524 (3)C10—H10B0.9900
C4A—N5—C5A109.50 (16)C1—C10B—C10A133.14 (17)
C4A—N5—H5124.8 (14)C2—C1—H1121.00
C5A—N5—H5125.7 (14)C10B—C1—H1121.00
C2—C1—C10B117.39 (17)C2—C3—H3120.00
Cl2—C2—C3117.57 (13)C4—C3—H3120.00
Cl2—C2—C1119.41 (14)C3—C4—H4121.00
C1—C2—C3123.02 (17)C4A—C4—H4121.00
C2—C3—C4120.45 (16)C6—C7—H7A107.00
C3—C4—C4A117.35 (17)C6—C7—H7B107.00
N5—C4A—C4129.78 (18)C8—C7—H7A107.00
N5—C4A—C10B107.77 (15)C8—C7—H7B107.00
C4—C4A—C10B122.44 (17)H7A—C7—H7B107.00
N5—C5A—C6116.33 (16)C7—C8—H8A109.00
C6—C5A—C10A134.44 (16)C7—C8—H8B109.00
N5—C5A—C10A109.23 (15)C9—C8—H8A109.00
O6—C6—C7118.84 (16)C9—C8—H8B109.00
C5A—C6—C7122.28 (16)H8A—C8—H8B108.00
O6—C6—C5A118.86 (16)C8—C9—H9A109.00
C6—C7—C8119.54 (15)C8—C9—H9B109.00
C7—C8—C9114.57 (15)C10—C9—H9A109.00
C8—C9—C10113.70 (15)C10—C9—H9B109.00
C9—C10—C10A116.94 (15)H9A—C9—H9B108.00
C5A—C10A—C10B105.96 (15)C9—C10—H10A108.00
C10—C10A—C10B122.67 (16)C9—C10—H10B108.00
C5A—C10A—C10131.32 (16)C10A—C10—H10A108.00
C4A—C10B—C10A107.53 (16)C10A—C10—H10B108.00
C1—C10B—C4A119.33 (16)H10A—C10—H10B107.00
C5A—N5—C4A—C4180.00 (18)N5—C5A—C6—C7168.77 (16)
C5A—N5—C4A—C10B0.65 (19)C10A—C5A—C6—O6169.76 (18)
C4A—N5—C5A—C6179.61 (15)C10A—C5A—C6—C712.0 (3)
C4A—N5—C5A—C10A0.2 (2)N5—C5A—C10A—C10177.14 (17)
C10B—C1—C2—Cl2178.65 (13)N5—C5A—C10A—C10B0.37 (19)
C10B—C1—C2—C31.6 (3)C6—C5A—C10A—C103.6 (3)
C2—C1—C10B—C4A0.8 (2)C6—C5A—C10A—C10B178.93 (18)
C2—C1—C10B—C10A178.53 (18)O6—C6—C7—C8166.26 (16)
Cl2—C2—C3—C4179.40 (14)C5A—C6—C7—C812.0 (3)
C1—C2—C3—C40.8 (3)C6—C7—C8—C963.1 (2)
C2—C3—C4—C4A0.8 (3)C7—C8—C9—C1088.01 (18)
C3—C4—C4A—N5177.70 (17)C8—C9—C10—C10A52.9 (2)
C3—C4—C4A—C10B1.6 (3)C9—C10—C10A—C5A11.6 (3)
N5—C4A—C10B—C1178.59 (15)C9—C10—C10A—C10B171.28 (16)
N5—C4A—C10B—C10A0.87 (19)C5A—C10A—C10B—C1178.59 (18)
C4—C4A—C10B—C10.8 (3)C5A—C10A—C10B—C4A0.75 (19)
C4—C4A—C10B—C10A179.72 (16)C10—C10A—C10B—C13.6 (3)
N5—C5A—C6—O69.5 (2)C10—C10A—C10B—C4A177.02 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4,C4A,C10B ring.
D—H···AD—HH···AD···AD—H···A
N5—H5···O6i0.837 (19)2.13 (2)2.904 (2)153.2 (19)
C9—H9A···O6ii0.992.553.228 (2)125
C7—H7A···Cg2iii0.992.953.7969 (19)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H12ClNO
Mr233.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.6354 (4), 6.3798 (2), 14.4513 (5)
β (°) 92.767 (3)
V3)1071.49 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO (Agilent, 2011)
Tmin, Tmax0.879, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
4977, 2274, 1836
Rint0.026
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.04
No. of reflections2274
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4,C4A,C10B ring.
D—H···AD—HH···AD···AD—H···A
N5—H5···O6i0.837 (19)2.13 (2)2.904 (2)153.2 (19)
C9—H9A···O6ii0.992.553.228 (2)125
C7—H7A···Cg2iii0.992.953.7969 (19)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z+1.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBennasar, M.-L., Vidal, B. & Bosch, J. (1993). J. Am. Chem. Soc. 115, 5340–5341.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGribble, G. W. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1045–1075.  Web of Science CrossRef Google Scholar
First citationHong, B.-C., Jiang, Y.-F., Chang, Y.-L. & Lee, S.-J. (2006). J. Chin. Chem. Soc. 53, 647–662.  CAS Google Scholar
First citationJoseph, B., Alagille, D., Mérour, J.-Y. & Léonce, S. (2000). Chem. Pharm. Bull. 48, 1872–1876.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoseph, B., Cornec, O. & Mérour, J.-Y. (1998). Tetrahedron, 54, 7765–7776.  Web of Science CrossRef CAS Google Scholar
First citationKawasaki, T. & Higuchi, K. (2005). Nat. Prod. Rep. 22, 761–793.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4428.  Web of Science PubMed Google Scholar
First citationLacoume, B., Milcent, G. & Olivier, A. (1972). Tetrahedron, 28, 667–674.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds