organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[2-(4-Chloro­benzyl­­idene)hydrazin­yl]-4-[3-(morpholin-4-ium-4-yl)propyl­amino]­quinazolin-1-ium bis­­(perchlorate)

aKey Laboratory of Original New Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China, and bKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: leixinjia@126.com

(Received 6 March 2012; accepted 14 May 2012; online 19 May 2012)

In the title compound, C22H27ClN6O22+·2ClO4, the mol­ecule adopts an E conformation about the C=N double bond. The quinazoline ring is approximately planar, with an r.m.s. deviation of 0.0432 Å, and forms a dihedral angle of 5.77 (4)° with the chloro­phenyl ring. The crystal packing features N—H⋯O hydrogen bonds.

Related literature

For anti­tumor background to a similar compound, see: Abouzid & Shouman (2008[Abouzid, K. & Shouman, S. (2008). Bioorg. Med. Chem. 16, 7543-7551.]); Zhang et al. (2008[Zhang, H. W., Solomon, V. R., Hu, C. K., Ulibarri, G. & Lee, H. Y. (2008). Biomed. Pharmacother. 62, 65-69.]); An et al. (2010[An, Z. Y., Yan, Y. Y., Peng, D., Ou, T. M., Tan, J. H., Huang, S. L., An, L. K., Gu, L. Q. & Huang, Z. S. (2010). Eur. J. Med. Chem. 45, 3895-3903.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 119-132.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27ClN6O2+·2ClO4

  • Mr = 625.85

  • Monoclinic, P 21 /n

  • a = 16.1835 (7) Å

  • b = 11.6719 (4) Å

  • c = 16.7332 (6) Å

  • β = 112.127 (3)°

  • V = 2927.98 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.920

  • 16024 measured reflections

  • 5127 independent reflections

  • 2840 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.215

  • S = 1.02

  • 5127 reflections

  • 361 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O3 0.91 1.82 2.717 (6) 168
N2—H2C⋯O6i 0.86 2.04 2.888 (5) 167
N4—H4C⋯O7ii 0.86 2.05 2.859 (5) 156
N5—H5C⋯O9iii 0.86 2.11 2.915 (5) 157
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Antitumor agents based on 4-aminoquinazoline and 4-aminoquinoline skeletons have aroused increasing attention in the last few years, such as Gefitinib and its derivatives (Abouzid et al., 2008). Recently, the traditional immunostimulatory agents CQ and its derivatives, which possess the 4-aminoquinoline skeleton either, were reported for excellent antitumor potency (Zhang et al., 2008; An et al., 2010). In addition, hydrazone fragments are important pharmacophores which occur frequently in the design of antitumor drugs (Horiuchi et al., 2009). In our ongoing research on antitumor agents with 4-aminoquinazoline and 4-aminoquinoline skeletons, the target compound, (E)-2-(2-(4-chlorobenzylidene)hydrazinyl)-N- (3-morpholinopropyl)quinazolin-4-amine diperchlorate, was designed and synthesized.

The crystal structure of the title compound is given in Fig. 1. The organic molecule adopts an E configuration about the C=N double bond. The quinazoline ring is approximately planar, with the r.m.s. deviation of 0.0432 Å. The dihedral angle between the quinazoline ring and the chlorophenyl ring is 5.77 (4) °. The molecular structure is stabilized by N1—H1C···O3, N2—H2C···O6, N4—H4C···O7 hydrogen bonds with perchlorate units (Table 1). In the crystal, adjacent molecules are stabilized by intermolecular N5—H5C···O9 hydrogen bonds linking the molecules into chains along the b axis (Table 1, Fig. 2).

Related literature top

For antitumor background to the similar compound, see: Abouzid & Shouman (2008); Zhang et al. (2008); An et al. (2010); Horiuchi et al. (2009).

Experimental top

Taking 2-aminobenzoic acid and urea as the starting materials, (E)-2-(2-(4-chlorobenzylidene)hydrazinyl)-N- (3-morpholinopropyl)quinazolin-4-amine was prepared according to the literature methods (Abouzid et al., 2008; Horiuchi et al., 2009), which was purified by silica gel column chromatography (CH2Cl2/Methanol 15:1). 70% Perchloric acid (24 mmol, 1.96 ml) was added to a solution of (E)-2-(2-(4-chlorobenzylidene)hydrazinyl)-N- (3-morpholinopropyl)quinazolin-4-amine (20 mmol, 8.5 g) in acetone (50 ml) at room temperature, then the reaction mixture was stirred at 313 K for 3 h. After cooling to ambient temperature, the mixture was filtered and washed with acetone. The resulting solid was dissolved in methanol to yield the target compound as colorless single crystals over a period of 10 days.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, N—H = 0.86–0.91 Å, and Uiso(H) =1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the crystal packing showing a chain of molecules along the b axis linked via N—H···O contacts.
(E)-2-[2-(4-Chlorobenzylidene)hydrazinyl]-4-[3-(morpholin-4-ium- 4-yl)propylamino]quinazolin-1-ium bis(perchlorate) top
Crystal data top
C22H27ClN6O2+·2ClO4F(000) = 1296
Mr = 625.85Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1056 reflections
a = 16.1835 (7) Åθ = 3.0–19.4°
b = 11.6719 (4) ŵ = 0.37 mm1
c = 16.7332 (6) ÅT = 293 K
β = 112.127 (3)°Block, colorless
V = 2927.98 (19) Å30.28 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5127 independent reflections
Radiation source: fine-focus sealed tube2840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1719
Tmin = 0.903, Tmax = 0.920k = 1313
16024 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1136P)2]
where P = (Fo2 + 2Fc2)/3
5127 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 1.13 e Å3
6 restraintsΔρmin = 0.49 e Å3
Crystal data top
C22H27ClN6O2+·2ClO4V = 2927.98 (19) Å3
Mr = 625.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.1835 (7) ŵ = 0.37 mm1
b = 11.6719 (4) ÅT = 293 K
c = 16.7332 (6) Å0.28 × 0.26 × 0.23 mm
β = 112.127 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5127 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2840 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.920Rint = 0.083
16024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0706 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 1.02Δρmax = 1.13 e Å3
5127 reflectionsΔρmin = 0.49 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48875 (8)0.24389 (10)0.24289 (8)0.0469 (4)
Cl20.58604 (10)0.68187 (13)0.08849 (9)0.0604 (4)
Cl30.64366 (10)0.15934 (13)0.86537 (9)0.0617 (5)
O10.4762 (4)0.6658 (6)0.0106 (5)0.149 (3)
O20.6449 (3)0.6308 (5)0.0545 (3)0.0987 (17)
O30.5925 (4)0.8078 (4)0.0946 (3)0.1027 (17)
O40.5874 (3)0.6329 (5)0.1671 (3)0.0980 (17)
O50.4191 (4)0.3417 (5)0.1669 (4)0.126 (2)
O60.4327 (3)0.1461 (3)0.2421 (3)0.0737 (13)
O70.5211 (2)0.3043 (3)0.3255 (2)0.0542 (10)
O80.5596 (2)0.2153 (3)0.2142 (3)0.0590 (10)
C10.8016 (4)0.9059 (5)0.1749 (4)0.0554 (15)
H1A0.85560.94530.21080.066*
H1B0.81100.82430.18550.066*
C20.7831 (5)0.9304 (5)0.0821 (4)0.0679 (18)
H2A0.83330.90560.06820.082*
H2B0.73090.88780.04610.082*
O90.7683 (3)1.0492 (3)0.0646 (3)0.0625 (11)
C30.6953 (4)1.0882 (5)0.0842 (4)0.0642 (17)
H4A0.64151.04900.04760.077*
H4B0.68691.16960.07200.077*
C40.7095 (4)1.0676 (4)0.1775 (3)0.0478 (13)
H5A0.76031.11180.21440.057*
H5B0.65741.09250.18800.057*
C50.7460 (3)0.9167 (4)0.2914 (3)0.0446 (12)
H6A0.80300.95080.32590.054*
H6B0.75220.83430.29880.054*
C60.6766 (3)0.9576 (4)0.3258 (3)0.0423 (12)
H7A0.67191.04030.32040.051*
H7B0.69700.93900.38670.051*
C70.5840 (3)0.9055 (4)0.2798 (3)0.0420 (12)
H8A0.56030.93100.22020.050*
H8B0.58920.82270.27980.050*
C80.5128 (3)0.8816 (4)0.3846 (3)0.0336 (11)
C90.4407 (3)0.9074 (4)0.4136 (3)0.0301 (10)
C100.3748 (3)0.9904 (4)0.3750 (3)0.0399 (12)
H11A0.37811.03620.33080.048*
C110.3050 (3)1.0038 (4)0.4028 (3)0.0444 (12)
H12A0.26091.05790.37660.053*
C120.3006 (3)0.9370 (4)0.4695 (3)0.0393 (12)
H13A0.25340.94650.48780.047*
C130.3654 (3)0.8568 (4)0.5088 (3)0.0399 (12)
H14A0.36260.81300.55410.048*
C140.4347 (3)0.8417 (4)0.4807 (3)0.0303 (10)
C150.5601 (3)0.7361 (4)0.4838 (3)0.0334 (11)
C160.6585 (3)0.4948 (4)0.6029 (3)0.0376 (11)
H17A0.70370.48660.58160.045*
C170.6528 (3)0.4124 (4)0.6663 (3)0.0328 (10)
C180.5837 (3)0.4168 (4)0.6972 (3)0.0396 (12)
H19A0.53930.47200.67620.047*
C190.5810 (3)0.3391 (4)0.7588 (3)0.0411 (12)
H20A0.53580.34270.78040.049*
C200.6469 (3)0.2561 (4)0.7877 (3)0.0394 (12)
C210.7143 (3)0.2505 (4)0.7574 (3)0.0416 (12)
H22A0.75820.19460.77770.050*
C220.7164 (3)0.3291 (4)0.6964 (3)0.0413 (12)
H23A0.76200.32520.67540.050*
N10.7255 (3)0.9444 (3)0.1983 (2)0.0391 (10)
H1C0.67590.90480.16560.047*
N20.5224 (3)0.9373 (3)0.3206 (2)0.0395 (10)
H2C0.48980.99700.30130.047*
N30.5702 (2)0.7942 (3)0.4196 (2)0.0365 (9)
N40.4993 (2)0.7581 (3)0.5177 (2)0.0345 (9)
H4C0.50000.72080.56230.041*
N50.6164 (3)0.6481 (3)0.5155 (3)0.0417 (10)
H5C0.65960.63620.49840.050*
N60.6038 (3)0.5771 (3)0.5758 (2)0.0380 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0417 (7)0.0481 (8)0.0541 (8)0.0074 (6)0.0216 (6)0.0159 (6)
Cl20.0563 (9)0.0753 (11)0.0496 (9)0.0027 (7)0.0201 (7)0.0064 (7)
Cl30.0664 (10)0.0636 (9)0.0556 (9)0.0047 (7)0.0238 (7)0.0238 (7)
O10.099 (5)0.156 (6)0.161 (6)0.003 (4)0.013 (4)0.023 (5)
O20.073 (3)0.165 (5)0.072 (3)0.045 (3)0.043 (3)0.001 (3)
O30.111 (4)0.071 (3)0.107 (4)0.028 (3)0.020 (3)0.027 (3)
O40.089 (3)0.149 (5)0.074 (3)0.048 (3)0.051 (3)0.051 (3)
O50.126 (5)0.122 (5)0.111 (4)0.023 (4)0.025 (4)0.041 (4)
O60.055 (2)0.056 (2)0.107 (3)0.0075 (19)0.027 (2)0.030 (2)
O70.059 (2)0.075 (3)0.035 (2)0.0039 (19)0.0237 (18)0.0051 (18)
O80.048 (2)0.063 (2)0.078 (3)0.0027 (18)0.038 (2)0.011 (2)
C10.064 (4)0.054 (3)0.066 (4)0.027 (3)0.045 (3)0.019 (3)
C20.094 (5)0.058 (4)0.077 (4)0.022 (3)0.062 (4)0.017 (3)
O90.078 (3)0.059 (2)0.075 (3)0.023 (2)0.057 (2)0.026 (2)
C30.074 (4)0.067 (4)0.068 (4)0.028 (3)0.045 (3)0.028 (3)
C40.060 (3)0.034 (3)0.060 (3)0.011 (2)0.034 (3)0.011 (2)
C50.043 (3)0.054 (3)0.038 (3)0.001 (2)0.017 (2)0.010 (2)
C60.047 (3)0.047 (3)0.041 (3)0.006 (2)0.026 (2)0.003 (2)
C70.047 (3)0.049 (3)0.037 (3)0.004 (2)0.024 (2)0.003 (2)
C80.037 (3)0.035 (3)0.031 (3)0.008 (2)0.015 (2)0.002 (2)
C90.031 (2)0.032 (2)0.028 (2)0.0028 (19)0.012 (2)0.0032 (19)
C100.045 (3)0.039 (3)0.038 (3)0.001 (2)0.017 (2)0.006 (2)
C110.039 (3)0.049 (3)0.046 (3)0.008 (2)0.016 (2)0.002 (2)
C120.036 (3)0.049 (3)0.037 (3)0.001 (2)0.018 (2)0.000 (2)
C130.041 (3)0.044 (3)0.036 (3)0.002 (2)0.017 (2)0.001 (2)
C140.034 (2)0.032 (2)0.026 (2)0.004 (2)0.013 (2)0.0028 (19)
C150.035 (3)0.036 (3)0.030 (3)0.002 (2)0.014 (2)0.000 (2)
C160.040 (3)0.038 (3)0.038 (3)0.000 (2)0.018 (2)0.001 (2)
C170.037 (3)0.031 (2)0.032 (2)0.003 (2)0.016 (2)0.0003 (19)
C180.039 (3)0.036 (3)0.044 (3)0.008 (2)0.016 (2)0.009 (2)
C190.040 (3)0.045 (3)0.042 (3)0.001 (2)0.020 (2)0.000 (2)
C200.046 (3)0.036 (3)0.034 (3)0.004 (2)0.012 (2)0.004 (2)
C210.043 (3)0.041 (3)0.038 (3)0.009 (2)0.012 (2)0.005 (2)
C220.040 (3)0.042 (3)0.045 (3)0.006 (2)0.020 (2)0.000 (2)
N10.045 (2)0.036 (2)0.043 (2)0.0045 (18)0.024 (2)0.0054 (18)
N20.045 (2)0.040 (2)0.042 (2)0.0005 (18)0.025 (2)0.0079 (18)
N30.038 (2)0.043 (2)0.033 (2)0.0021 (19)0.0182 (18)0.0058 (18)
N40.042 (2)0.038 (2)0.030 (2)0.0042 (18)0.0201 (18)0.0085 (17)
N50.045 (2)0.043 (2)0.045 (2)0.0109 (19)0.026 (2)0.0099 (19)
N60.048 (2)0.034 (2)0.037 (2)0.0015 (19)0.021 (2)0.0052 (17)
Geometric parameters (Å, º) top
Cl1—O81.440 (3)C8—N31.355 (6)
Cl1—O61.455 (4)C8—C91.455 (6)
Cl1—O71.462 (4)C9—C141.393 (6)
Cl1—O51.764 (5)C9—C101.404 (6)
Cl2—O21.412 (4)C10—C111.384 (6)
Cl2—O41.427 (4)C10—H11A0.9300
Cl2—O31.474 (5)C11—C121.385 (7)
Cl2—O11.774 (7)C11—H12A0.9300
Cl3—C201.737 (5)C12—C131.374 (6)
C1—C21.493 (7)C12—H13A0.9300
C1—N11.496 (6)C13—C141.382 (6)
C1—H1A0.9700C13—H14A0.9300
C1—H1B0.9700C14—N41.393 (6)
C2—O91.418 (6)C15—N31.331 (5)
C2—H2A0.9700C15—N41.332 (5)
C2—H2B0.9700C15—N51.343 (6)
O9—C31.415 (6)C16—N61.269 (6)
C3—C41.509 (7)C16—C171.461 (6)
C3—H4A0.9700C16—H17A0.9300
C3—H4B0.9700C17—C221.366 (6)
C4—N11.478 (6)C17—C181.398 (6)
C4—H5A0.9700C18—C191.387 (6)
C4—H5B0.9700C18—H19A0.9300
C5—N11.500 (6)C19—C201.387 (7)
C5—C61.518 (6)C19—H20A0.9300
C5—H6A0.9700C20—C211.366 (7)
C5—H6B0.9700C21—C221.383 (6)
C6—C71.530 (7)C21—H22A0.9300
C6—H7A0.9700C22—H23A0.9300
C6—H7B0.9700N1—H1C0.9100
C7—N21.453 (6)N2—H2C0.8600
C7—H8A0.9700N4—H4C0.8600
C7—H8B0.9700N5—N61.379 (5)
C8—N21.311 (5)N5—H5C0.8600
O8—Cl1—O6112.8 (2)C14—C9—C8117.6 (4)
O8—Cl1—O7112.4 (2)C10—C9—C8123.7 (4)
O6—Cl1—O7112.7 (2)C11—C10—C9119.8 (4)
O8—Cl1—O5106.4 (3)C11—C10—H11A120.1
O6—Cl1—O5105.9 (3)C9—C10—H11A120.1
O7—Cl1—O5105.9 (3)C10—C11—C12120.3 (5)
O2—Cl2—O4115.1 (3)C10—C11—H12A119.9
O2—Cl2—O3114.1 (3)C12—C11—H12A119.9
O4—Cl2—O3111.1 (3)C13—C12—C11120.5 (5)
O2—Cl2—O1107.5 (3)C13—C12—H13A119.7
O4—Cl2—O1107.3 (4)C11—C12—H13A119.7
O3—Cl2—O1100.4 (3)C12—C13—C14119.7 (4)
C2—C1—N1110.6 (4)C12—C13—H14A120.2
C2—C1—H1A109.5C14—C13—H14A120.2
N1—C1—H1A109.5C13—C14—C9121.1 (4)
C2—C1—H1B109.5C13—C14—N4120.5 (4)
N1—C1—H1B109.5C9—C14—N4118.4 (4)
H1A—C1—H1B108.1N3—C15—N4125.5 (4)
O9—C2—C1110.7 (5)N3—C15—N5115.8 (4)
O9—C2—H2A109.5N4—C15—N5118.7 (4)
C1—C2—H2A109.5N6—C16—C17122.1 (4)
O9—C2—H2B109.5N6—C16—H17A119.0
C1—C2—H2B109.5C17—C16—H17A119.0
H2A—C2—H2B108.1C22—C17—C18119.1 (4)
C3—O9—C2111.0 (4)C22—C17—C16119.4 (4)
O9—C3—C4111.9 (5)C18—C17—C16121.5 (4)
O9—C3—H4A109.2C19—C18—C17120.3 (4)
C4—C3—H4A109.2C19—C18—H19A119.8
O9—C3—H4B109.2C17—C18—H19A119.8
C4—C3—H4B109.2C20—C19—C18118.7 (4)
H4A—C3—H4B107.9C20—C19—H20A120.6
N1—C4—C3110.2 (4)C18—C19—H20A120.6
N1—C4—H5A109.6C21—C20—C19121.4 (4)
C3—C4—H5A109.6C21—C20—Cl3120.0 (4)
N1—C4—H5B109.6C19—C20—Cl3118.6 (4)
C3—C4—H5B109.6C20—C21—C22119.2 (4)
H5A—C4—H5B108.1C20—C21—H22A120.4
N1—C5—C6114.8 (4)C22—C21—H22A120.4
N1—C5—H6A108.6C17—C22—C21121.3 (5)
C6—C5—H6A108.6C17—C22—H23A119.3
N1—C5—H6B108.6C21—C22—H23A119.3
C6—C5—H6B108.6C4—N1—C1108.6 (4)
H6A—C5—H6B107.5C4—N1—C5113.9 (4)
C5—C6—C7114.1 (4)C1—N1—C5109.0 (4)
C5—C6—H7A108.7C4—N1—H1C108.4
C7—C6—H7A108.7C1—N1—H1C108.4
C5—C6—H7B108.7C5—N1—H1C108.4
C7—C6—H7B108.7C8—N2—C7124.8 (4)
H7A—C6—H7B107.6C8—N2—H2C117.6
N2—C7—C6112.2 (4)C7—N2—H2C117.6
N2—C7—H8A109.2C15—N3—C8117.4 (4)
C6—C7—H8A109.2C15—N4—C14119.8 (4)
N2—C7—H8B109.2C15—N4—H4C120.1
C6—C7—H8B109.2C14—N4—H4C120.1
H8A—C7—H8B107.9C15—N5—N6118.9 (4)
N2—C8—N3117.0 (4)C15—N5—H5C120.6
N2—C8—C9121.8 (4)N6—N5—H5C120.6
N3—C8—C9121.1 (4)C16—N6—N5116.1 (4)
C14—C9—C10118.7 (4)
N1—C1—C2—O958.6 (7)C18—C19—C20—Cl3179.7 (4)
C1—C2—O9—C359.2 (7)C19—C20—C21—C220.4 (7)
C2—O9—C3—C458.6 (7)Cl3—C20—C21—C22179.2 (4)
O9—C3—C4—N157.0 (6)C18—C17—C22—C210.9 (7)
N1—C5—C6—C761.1 (6)C16—C17—C22—C21179.0 (4)
C5—C6—C7—N2173.8 (4)C20—C21—C22—C170.4 (7)
N2—C8—C9—C14178.4 (4)C3—C4—N1—C154.8 (6)
N3—C8—C9—C142.2 (6)C3—C4—N1—C5176.4 (4)
N2—C8—C9—C101.8 (7)C2—C1—N1—C456.3 (6)
N3—C8—C9—C10174.4 (4)C2—C1—N1—C5179.1 (5)
C14—C9—C10—C111.2 (7)C6—C5—N1—C455.1 (6)
C8—C9—C10—C11175.4 (4)C6—C5—N1—C1176.5 (4)
C9—C10—C11—C121.0 (7)N3—C8—N2—C76.0 (7)
C10—C11—C12—C130.1 (7)C9—C8—N2—C7170.4 (4)
C11—C12—C13—C141.0 (7)C6—C7—N2—C887.4 (6)
C12—C13—C14—C90.8 (7)N4—C15—N3—C81.4 (7)
C12—C13—C14—N4177.7 (4)N5—C15—N3—C8178.2 (4)
C10—C9—C14—C130.3 (6)N2—C8—N3—C15179.0 (4)
C8—C9—C14—C13176.5 (4)C9—C8—N3—C152.6 (6)
C10—C9—C14—N4178.8 (4)N3—C15—N4—C145.7 (7)
C8—C9—C14—N42.0 (6)N5—C15—N4—C14173.9 (4)
N6—C16—C17—C22176.6 (4)C13—C14—N4—C15172.7 (4)
N6—C16—C17—C183.3 (7)C9—C14—N4—C155.8 (6)
C22—C17—C18—C191.4 (7)N3—C15—N5—N6173.4 (4)
C16—C17—C18—C19178.5 (4)N4—C15—N5—N66.3 (6)
C17—C18—C19—C201.3 (7)C17—C16—N6—N5179.6 (4)
C18—C19—C20—C210.8 (7)C15—N5—N6—C16179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O30.911.822.717 (6)168
N2—H2C···O6i0.862.042.888 (5)167
N4—H4C···O7ii0.862.052.859 (5)156
N5—H5C···O9iii0.862.112.915 (5)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H27ClN6O2+·2ClO4
Mr625.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)16.1835 (7), 11.6719 (4), 16.7332 (6)
β (°) 112.127 (3)
V3)2927.98 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.28 × 0.26 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.903, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
16024, 5127, 2840
Rint0.083
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.215, 1.02
No. of reflections5127
No. of parameters361
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.49

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O30.911.822.717 (6)168.4
N2—H2C···O6i0.862.042.888 (5)166.8
N4—H4C···O7ii0.862.052.859 (5)156.0
N5—H5C···O9iii0.862.112.915 (5)156.5
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dalian University of Technology for providing research facilities. This work was supported by the National S & T Major Project of China (No. 2009ZX09301"C012) and the S & T Project of Liaoning Province (No. LJQ201107).

References

First citationAbouzid, K. & Shouman, S. (2008). Bioorg. Med. Chem. 16, 7543–7551.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAn, Z. Y., Yan, Y. Y., Peng, D., Ou, T. M., Tan, J. H., Huang, S. L., An, L. K., Gu, L. Q. & Huang, Z. S. (2010). Eur. J. Med. Chem. 45, 3895–3903.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoriuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 119–132.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H. W., Solomon, V. R., Hu, C. K., Ulibarri, G. & Lee, H. Y. (2008). Biomed. Pharmacother. 62, 65–69.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds