[Journal logo]

Volume 68 
Part 6 
Page m749  
June 2012  

Received 13 April 2012
Accepted 19 April 2012
Online 12 May 2012

Key indicators
Single-crystal X-ray study
T = 110 K
Mean [sigma](C-C) = 0.001 Å
R = 0.036
wR = 0.098
Data-to-parameter ratio = 27.0
Details
Open access

Lithium bis(2-methyllactato)borate monohydrate

aIonic Liquids and Electrolytes for Energy Technologies (ILEET) Laboratory, Dept. of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA, and bX-ray Structural Facility, Dept. of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
Correspondence e-mail: whender@ncsu.edu

The title compound {systematic name: poly[[aqualithium]-[mu]-3,3,8,8-tetramethyl-1,4,6,9-tetraoxa-5[lambda]4-borataspiro[4.4]nonane-2,7-dione]}, [Li(C8H12BO6)(H2O)]n (LiBMLB), forms a 12-membered macrocycle, which lies across a crystallographic inversion center. The lithium cations are pseudo-tetrahedrally coordinated by three methyllactate ligands and a water molecule. The asymmetric units couple across crystallographic inversion centers, forming the 12-membered macrocycles. These macrocycles, in turn, cross-link through the Li+ cations, forming an infinite polymeric structure in two dimensions parallel to (101).

Related literature

For the synthesis and purification of HBMLB [BMLB is bis(2-methyllactato)borate], see: Lamande et al. (1987[Lamande, L., Boyer, D. & Munoz, A. (1987). J. Organomet. Chem. 329, 1-29.]). For the synthesis and properties of LiBMLB and BMLB--based ionic liquids, see: Xu et al. (2003[Xu, W., Wang, L.-M., Nieman, R. A. & Angell, C. A. (2003). J. Phys. Chem. B, 107, 11749-11749.]). For crystallographic data of similar lithium salts, see: Zavalij et al. (2004[Zavalij, P. Y., Yang, S. & Whittingham, M. S. (2004). Acta Cryst. B60, 716-724.]); Allen et al. (2011[Allen, J. L., Han, S.-D., Boyle, P. D. & Henderson, W. A. (2011). J. Power Sources, 196, 9737-9742.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C8H12BO6)(H2O)]

  • Mr = 239.94

  • Orthorhombic, P b c a

  • a = 12.7034 (4) Å

  • b = 11.3939 (4) Å

  • c = 15.8258 (5) Å

  • V = 2290.65 (13) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.12 mm-1

  • T = 110 K

  • 0.34 × 0.23 × 0.18 mm

Data collection
  • Bruker-Nonius Kappa X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.979

  • 97648 measured reflections

  • 5663 independent reflections

  • 4436 reflections with I > 2[sigma](I)

  • Rint = 0.037

Refinement
  • R[F2 > 2[sigma](F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.05

  • 5663 reflections

  • 210 parameters

  • All H-atom parameters refined

  • [Delta][rho]max = 0.51 e Å-3

  • [Delta][rho]min = -0.26 e Å-3

Table 1
Selected bond lengths (Å)

Li1-O1 1.9725 (13)
Li1-O1W 1.9487 (13)
Li1-O3i 2.0059 (13)
Li1-O6ii 1.9155 (13)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: XL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: cif2tables.py (Boyle, 2008[Boyle, P.D. (2008). http://www.xray.ncsu.edu/PyCIFUtils/]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2036 ).


Acknowledgements

This work was fully supported by the US DOE BATT Program (contract DE-AC02-05-CH11231). The authors wish to thank the Department of Chemistry of North Carolina State University and the State of North Carolina for funding the purchase of the APEXII diffractometer. JLA would like to thank the SMART Scholarship Program and the American Society for Engineering Education (ASEE) for the award of a SMART Graduate Research Fellowship.

References

Allen, J. L., Han, S.-D., Boyle, P. D. & Henderson, W. A. (2011). J. Power Sources, 196, 9737-9742.  [ISI] [CSD] [CrossRef] [ChemPort]
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  [CrossRef] [details]
Boyle, P.D. (2008). http://www.xray.ncsu.edu/PyCIFUtils/
Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  [CrossRef] [details]
Lamande, L., Boyer, D. & Munoz, A. (1987). J. Organomet. Chem. 329, 1-29.  [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Xu, W., Wang, L.-M., Nieman, R. A. & Angell, C. A. (2003). J. Phys. Chem. B, 107, 11749-11749.  [CrossRef] [ChemPort]
Zavalij, P. Y., Yang, S. & Whittingham, M. S. (2004). Acta Cryst. B60, 716-724.  [ISI] [CSD] [CrossRef] [details]


Acta Cryst (2012). E68, m749  [ doi:10.1107/S1600536812017540 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.