

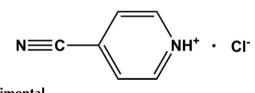
Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Cyanopyridinium chloride

Wen-Ni Zheng

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: chenxinyuanseu@yahoo.com.cn


Received 25 April 2012; accepted 25 April 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.008 Å; R factor = 0.086; wR factor = 0.234; data-to-parameter ratio = 15.0.

In the crystal structure of the title salt, $C_6H_5N_2^+\cdot Cl^-$, the pyridinium cation links to the Cl^- anion *via* an N-H···Cl hydrogen bond. Weak C-H···Cl interactions also occur.

Related literature

For the structures and properties of related compounds, see: Chen *et al.* (2000); Dai & Chen (2011); Xu *et al.* (2011); Liu *et al.* (1999); Zhao *et al.* (2003); Zheng (2011).

Experimental

Crystal data $C_6H_5N_2^+ \cdot Cl^ M_r = 140.57$ Triclinic, $P\overline{1}$ a = 6.6166 (2) Å b = 7.6552 (3) Å c = 8.3495 (5) Å $\alpha = 63.957$ (5)° $\beta = 69.830$ (2)°

 $\gamma = 74.367 (4)^{\circ}$ $V = 353.16 (3) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.45 \text{ mm}^{-1}$ T = 123 K $0.10 \times 0.05 \times 0.05 \text{ mm}$ 3077 measured reflections

1231 independent reflections

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.910, T_{max} = 1.000$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.086 & 1 \text{ restraint} \\ wR(F^2) &= 0.234 & \text{H-atom par} \\ S &= 1.32 & \Delta\rho_{\text{max}} = 0.9 \\ 1231 \text{ reflections} & \Delta\rho_{\text{min}} = -0 \\ 82 \text{ parameters} & \end{split}$$

1078 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$

H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.97 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.62 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···Cl1 ⁱ	0.90	2.14	3.033 (5)	174
$C4-H4A\cdots Cl1$	0.95	2.71	3.566 (5)	151
$C5-H5A\cdots Cl1^{ii}$	0.95	2.65	3.566 (6)	161

Symmetry codes: (i) x, y, z - 1; (ii) -x, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by a start-up grant from Southeast University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5524).

References

Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.

Dai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.

Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). *Inorg. Chem. Commun.* 14, 1093–1096.

Zhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z.-G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). *Chem. Mater.* **15**, 4166–4168. Zheng, W.-N. (2011). *Acta Cryst.* E**67**, m344.

supporting information

Acta Cryst. (2012). E68, o1611 [doi:10.1107/S1600536812018648]

4-Cyanopyridinium chloride

Wen-Ni Zheng

S1. Comment

Simple organic salts containing strong intrermolecular H-bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Chen *et al.*, 2000; Liu *et al.*, 1999; Zhao *et al.*, 2003). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new materials have been elaborated (Dai & Chen, 2011; Xu *et al.*, 2011; Zheng, 2011). Herewith we present the synthesis and crystal structure of the title compound.


In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit was composed of one 4-cyanopyridinium cation and one Cl⁻ anion. The protonated N atom was involved in strong intramolecular N— H···Cl hydrogen bonds with the N···Cl distance of 3.033 (5)Å. The weak intermolecular C4—H4A···Cl1 and C5— H45···Cl1 interactions were presented in the crystal structure with C5···Cl1 = 3.566 (5)Å and C5···Cl1 = 3.566 (6)Å, respectively. The crystal packing is further stabilized by aromatic $\pi \cdot \cdot \pi$ interactions between the pyridine rings of the neighbouring 4-cyanopyridinium cations with the Cg···Cg distances of 4.416 (5) Å and 4.102 (5) Å (Cg is the centroide of the pyridine ring) (Fig. 2 and Table 1).

S2. Experimental

The HCl (5 mL), isonicotinonitrile (20 mmol) and ethanol (50 mL) were added into a 100 mL flask. The mixture was stirred at 333 K for 2 h, and then the precipitate was filtrated out. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

S3. Refinement

All the H atoms were situated into the idealized positions and treated as riding with C–H = 0.95 and N—H = 0.90 Å, $U_{iso}(H) = 1.2U_{eq}(C,N).$

Figure 1

A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.

Z = 2

F(000) = 144

 $\theta = 2.8 - 27.5^{\circ}$

 $\mu = 0.45 \text{ mm}^{-1}$

Block, colorless

 $0.10\times0.05\times0.05~mm$

T = 123 K

 $D_{\rm x} = 1.322 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1231 reflections

4-Cyanopyridinium chloride

Crystal data

C₆H₅N₂⁺·Cl⁻ $M_r = 140.57$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.6166 (2) Å b = 7.6552 (3) Å c = 8.3495 (5) Å a = 63.957 (5)° $\beta = 69.830$ (2)° $\gamma = 74.367$ (4)° V = 353.16 (3) Å³

Data collection

Rigaku Mercury2	3077 measured reflections
diffractometer	1231 independent reflections
Radiation source: fine-focus sealed tube	1078 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.8^\circ$
CCD profile fitting scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan	$k = -9 \rightarrow 9$
(CrystalClear; Rigaku, 2005)	$l = -9 \rightarrow 9$
$T_{\min} = 0.910, \ T_{\max} = 1.000$	

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.086$	Hydrogen site location: inferred from
$wR(F^2) = 0.234$	neighbouring sites
S = 1.32	H-atom parameters constrained
1231 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0002P)^2 + 3.2997P]$
82 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.97 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.62 \text{ e} \text{ Å}^{-3}$
	•

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.8017 (7)	0.1582 (6)	0.6278 (6)	0.0267 (11)	
N1	0.4202 (7)	0.2736 (6)	0.0960 (6)	0.0234 (10)	
H1	0.3576	0.2900	0.0094	0.028*	
C1	0.6318 (8)	0.1817 (7)	0.0856 (7)	0.0238 (12)	
H1A	0.7092	0.1377	-0.0122	0.029*	
C3	0.6118 (8)	0.2221 (7)	0.3646 (6)	0.0192 (11)	
C4	0.3919 (8)	0.3182 (7)	0.3713 (7)	0.0238 (13)	
H4A	0.3103	0.3648	0.4667	0.029*	
C6	0.7156 (8)	0.1908 (7)	0.5071 (7)	0.0258 (13)	
C5	0.3016 (8)	0.3411 (7)	0.2334 (7)	0.0251 (13)	
H5A	0.1565	0.4042	0.2349	0.030*	
C2	0.7328 (8)	0.1531 (7)	0.2198 (7)	0.0222 (12)	
H2A	0.8783	0.0894	0.2146	0.027*	
Cl1	0.1808 (2)	0.31778 (18)	0.82634 (17)	0.0249 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2	0.031 (2)	0.021 (2)	0.0189 (19)	-0.0006 (18)	-0.0026 (17)	-0.0048 (16)
N1	0.031 (2)	0.0187 (18)	0.0204 (18)	-0.0053 (17)	-0.0098 (16)	-0.0034 (15)
C1	0.028 (2)	0.017 (2)	0.020 (2)	-0.001 (2)	-0.0027 (19)	-0.0056 (18)
C3	0.024 (2)	0.0126 (19)	0.015 (2)	-0.0054 (18)	-0.0029 (18)	-0.0008 (16)
C4	0.023 (2)	0.017 (2)	0.022 (2)	0.0001 (19)	0.0000 (19)	-0.0059 (18)
C6	0.025 (2)	0.023 (2)	0.025 (2)	-0.002 (2)	-0.003 (2)	-0.0097 (19)
C5	0.022 (2)	0.018 (2)	0.029 (2)	-0.0011 (19)	-0.008 (2)	-0.0029 (19)

supporting information

C2 Cl1	0.023 (2) 0.0244 (6)	0.016 (2) 0.0273 (6)	0.022 (2) 0.0235 (5)	0.0010 (19) 0.0001 (5)	-0.0046 (18) -0.0081 (4)	-0.0052 (18) -0.0108 (4)
Geome	tric parameters ((Å, °)				
N2-C	26	1.22	5 (7)	C3—C4	1	.437 (7)
N1-C	25	1.37	1 (7)	C3—C6	1	.473 (8)
N1-C	21	1.37	9 (6)	C4—C5	1	.398 (8)
N1—H	[1	0.89	99	C4—H4A	0	.9500
C1—C	22	1.404 (8)		С5—Н5А	0.9500	
С1—Н	[1A	0.95	0.9500 C2—H2A		0	.9500
С3—С	2	1.43	0 (7)			
C5—N	—N1—C1 122.5 (5)		5 (5)	С5—С4—Н4А	121.0	
C5—N	[1—H1	118.8		C3—C4—H4A	121.0	
C1—N	[1—H1	118.8		N2-C6-C3	177.9 (5)	
N1-C	C1—C2	119.	119.9 (5)		120.7 (4)	
N1-C	C1—H1A	120.	0	N1—C5—H5A	119.6	
С2—С	H1A	120.	0	C4—C5—H5A	119.6	
С2—С	23—C4	120.	3 (5)	C1—C2—C3	118.5 (4)	
С2—С	23—C6	118.9	9 (4)	C1—C2—H2A	120.7	
С4—С	23—C6	120.	8 (5)	C3—C2—H2A	1	20.7
С5—С	24—C3	118.	1 (5)			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N1—H1···Cl1 ⁱ	0.90	2.14	3.033 (5)	174
C4—H4 <i>A</i> ···Cl1	0.95	2.71	3.566 (5)	151
C5—H5A···Cl1 ⁱⁱ	0.95	2.65	3.566 (6)	161

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) –*x*, –*y*+1, –*z*+1.