metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m794-m795

Chlorido{μ-2,6-bis­­[(2-amino­eth­yl)imino­meth­yl]-4-chloro­phenolato}-μ-oxido-dicopper(II) trihydrate

aKey Laboratory for Green Chemical Processes of the Ministry of Education, Wuhan Institute of Technology, 430073 Wuhan, People's Republic of China, bInstitute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, People's Republic of China, and cCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
*Correspondence e-mail: hzhouh@126.com

(Received 28 April 2012; accepted 20 May 2012; online 26 May 2012)

In the title dinuclear complex, [Cu2(C14H20ClN4O)ClO]·3H2O, one CuII cation assumes a distorted square-planar coordination geometry and the other a distorted square-pyramidal coordination geometry. Both CuII cations are N,N′,O-chelated by one arm of the 2,6-bis­[(2-amino­eth­yl)imino­meth­yl]-4-chloro­phenolate anion, and one oxide anion bridges the two CuII cations, forming a dinuclear complex. One of the CuII cations is further coordinated by an Cl anion in the apical direction. In the crystal, lattice water mol­ecules are linked with the complex mol­ecule via O—H⋯Cl hydrogen bonds while O—H⋯O hydrogen bonding occurs between lattice water mol­ecules , forming three-dimensional network structure.

Related literature

For the synthesis, see: Gagne et al. (1981[Gagne, R. R., Spiro, C. L., Smith, T. J., Hamann, C. A., Thies, W. R. & Shiemke, A. K. (1981). J. Am. Chem. Soc. 103, 4073-4081.]). For a related oxygen anion-bridging complex, see: Olmstead et al. (2011[Olmstead, M. M., Boyce, D. W. & Bria, L. E. (2011). Acta Cryst. E67, m824-m825.]). For the biological activity of Schiff bases, see: Raman et al. (2007[Raman, N., Raja, J. D. & Sakthivel, A. (2007). J. Chem. Sci. 119, 303-310.]); Hao et al. (2006[Hao, Y. L., Yao, L., Zhang, W. & Cui, Q. X. Yu. Z. W. (2006). Chem. Res. 17, 16-18.]). For the biological properties of binuclear complexes, see: Tian et al. (2007[Tian, J. L., Feng, L., Gu, W., Xu, G. J., Yan, S. P., Liao, D. Z., Jiang, Z. H. & Cheng, P. (2007). J. Inorg. Biochem. 101, 196-202.]); Anbu et al. (2009[Anbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V. & Varghese, B. (2009). J. Inorg. Biochem. 103, 401-410.]). Several proteins in vivo contain transition metal atoms, especially, CuII, see: Dede et al. (2009[Dede, B., Ozmen, I. & Karipcin, F. (2009). Polyhedron, 28, 3967-3974.]); Veysel et al. (2003[Veysel, T. Y., Sevim, H. & Omer, A. (2003). Transition Met. Chem. 28, 676-681.]); Asokan et al. (1995[Asokan, A., Mandal, P., Varghese, B. & Manoharan, P. T. (1995). Chem. Sci. 107, 281-295.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C14H20ClN4O)ClO]·3H2O

  • Mr = 528.37

  • Monoclinic, P 21 /c

  • a = 11.201 (5) Å

  • b = 12.387 (7) Å

  • c = 16.718 (7) Å

  • β = 93.18 (4)°

  • V = 2316.0 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.572, Tmax = 0.633

  • 12029 measured reflections

  • 4087 independent reflections

  • 3286 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.175

  • S = 1.02

  • 4087 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WD⋯Cl1 0.85 1.90 2.583 (12) 136
O2W—H2WB⋯O3W 0.85 2.57 3.114 (13) 123
O3W—H3WD⋯Cl2 0.85 2.70 3.478 (10) 152

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

Schiff bases have received special attention of biochemists because of their biological activities (Raman et al., 2007; Hao et al., 2006). Researches show that binuclear complexes have good biological properties (Tian et al., 2007; Anbu et al., 2009). Several proteins in vivo contain transition metal centers, especially, the Cu(II) centers (Dede et al., 2009; Veysel et al., 2003). Thus, in this paper, we report on the synthesis and the crystal structure of a new binuclear copper complex. Although a similar complex has been reported in the literature (Asokan et al., 1995), however, the title complex has different substituent in the phenoxid group and counter anion with the reported complex. The crystal structure of the title complex is shown in Fig.1. The molecular unit contains a chloride anion and two copper ions. The coordination environment of the two copper ions are different. Cu2 has four coordinated atoms with quadrilateral configuration, all the atoms locate in an approximately plane with a mean plane derivation of 0.072 Å. While Cu1 has five coordinated atoms with a square pyramid configuration and the chloride anion occupies the apical position with Cu1-Cl2 distance of 2.484 Å. The basal plane is composed of two imino nitrogen atoms, one phenoxide atom and one oxygen anion derived from the solvent of H2O with a mean plane derivation of 0.016 Å. This oxygen anion bridged structure is also found in a dinuclear complex which was obtained by a similar experimental condition (Olmstead et al., 2011).

Related literature top

For the synthesis, see: Gagne et al. (1981). For a related oxygen anion-bridging complex, see: Olmstead et al. (2011). For the biological activity of Schiff bases, see: Raman et al. (2007); Hao et al. (2006). For the biological properties of binuclear complexes, see: Tian et al. (2007); Anbu et al. (2009). Several proteins in vivo contain transition metal atoms, especially, CuII, see: Dede et al. (2009); Veysel et al. (2003); Asokan et al. (1995).

Experimental top

2,6-Diformyl-4-chlorophenol was prepared according to the literature methods (Gagne et al., 1981). 2,6-Diformyl-4-chlorophenol (0.25 mmol, 0.046 g) in absolute methanol (10 ml) was added to a methanol solution (10 ml) containing 1,3-propanediamine (0.5 mmol, 0.037 g). The solution was stirred vigorously for 2 h at room temperature. Afterwards, a methanol solution (10 ml) of CuCl2.2H2O (0.5 mmol, 0.085 g) was added dropwise, the mixture was stirred for a further 6 h at ambient temperature. The dark-green block-shaped crystals suitable for X-ray structure analysis were obtained by evaporating the methanol solution of the complex over a period of one month.

Refinement top

H atoms were placed in calculated positions with 0.93–0.97 Å and O—H = 0.85 Å, and included in the refinement in the riding-model approximation, with U(H)=1.2–1.5Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity.
Chlorido{µ-2,6-bis[(2-aminoethyl)iminomethyl]-4-chlorophenolato}-µ-oxido- dicopper(II) trihydrate top
Crystal data top
[Cu2(C14H20ClN4O)ClO]·3H2OF(000) = 1080
Mr = 528.37Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4001 reflections
a = 11.201 (5) Åθ = 2.4–26.6°
b = 12.387 (7) ŵ = 2.10 mm1
c = 16.718 (7) ÅT = 291 K
β = 93.18 (4)°Block, green
V = 2316.0 (19) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4087 independent reflections
Radiation source: sealed tube3286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.572, Tmax = 0.633k = 1411
12029 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.080P)2 + 12.660P]
where P = (Fo2 + 2Fc2)/3
4087 reflections(Δ/σ)max = 0.076
244 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Cu2(C14H20ClN4O)ClO]·3H2OV = 2316.0 (19) Å3
Mr = 528.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.201 (5) ŵ = 2.10 mm1
b = 12.387 (7) ÅT = 291 K
c = 16.718 (7) Å0.30 × 0.26 × 0.24 mm
β = 93.18 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3286 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.633Rint = 0.024
12029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.080P)2 + 12.660P]
where P = (Fo2 + 2Fc2)/3
4087 reflectionsΔρmax = 0.65 e Å3
244 parametersΔρmin = 0.94 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29197 (15)0.09726 (13)0.30847 (10)0.0409 (4)
Cl20.31005 (15)0.62287 (14)0.44102 (10)0.0435 (4)
Cu10.43928 (7)0.66390 (6)0.32886 (5)0.0360 (2)
Cu20.22384 (7)0.67193 (6)0.21370 (5)0.0360 (2)
C10.6375 (6)0.7673 (6)0.4411 (4)0.0388 (15)
H1A0.62330.81170.48740.047*
H1B0.70890.79530.41800.047*
C20.6665 (7)0.6538 (6)0.4715 (4)0.0451 (17)
H2A0.60550.63020.50660.054*
H2B0.74270.65410.50200.054*
C30.6721 (6)0.5750 (5)0.4003 (4)0.0376 (15)
H3A0.72190.60640.36070.045*
H3B0.71010.50860.41910.045*
C40.5264 (6)0.4435 (6)0.3522 (4)0.0395 (15)
H40.58240.39500.37440.047*
C50.3361 (6)0.4596 (5)0.2694 (4)0.0360 (15)
C60.4249 (6)0.3996 (6)0.3141 (4)0.0412 (16)
C70.4106 (6)0.2905 (6)0.3267 (4)0.0358 (14)
H70.46770.25240.35770.043*
C80.3091 (7)0.2369 (6)0.2923 (4)0.0460 (17)
C90.2214 (6)0.2954 (5)0.2455 (4)0.0369 (14)
H90.15540.26020.22150.044*
C100.2354 (6)0.4051 (5)0.2363 (4)0.0396 (15)
C110.1424 (6)0.4496 (5)0.1867 (4)0.0409 (16)
H110.09130.39890.16210.049*
C120.0115 (6)0.5819 (6)0.1123 (5)0.0472 (18)
H12A0.05330.60590.14400.057*
H12B0.01570.51760.08370.057*
C130.0339 (7)0.6702 (6)0.0498 (4)0.0428 (16)
H13A0.03030.67100.00840.051*
H13B0.10870.65700.02490.051*
C140.0392 (6)0.7802 (5)0.0960 (4)0.0376 (15)
H14A0.05690.83610.05780.045*
H14B0.04030.79470.11360.045*
N10.5352 (5)0.7852 (5)0.3811 (3)0.0398 (13)
H1C0.56400.82430.34110.048*
H1D0.48270.82790.40500.048*
N20.5521 (5)0.5481 (5)0.3605 (3)0.0417 (13)
N30.1152 (5)0.5507 (5)0.1690 (3)0.0405 (13)
N40.1253 (5)0.7929 (5)0.1670 (3)0.0437 (14)
H4A0.08300.81910.20690.052*
H4B0.17680.84520.15450.052*
O10.3458 (4)0.5674 (4)0.2586 (2)0.0373 (10)
O20.3320 (4)0.7525 (3)0.2702 (3)0.0360 (10)
O1W0.2820 (9)0.0067 (9)0.4419 (7)0.144 (4)
H1WD0.26530.04940.41420.173*
H1WC0.26920.00550.49070.216*
O2W0.1297 (9)0.4729 (8)0.3981 (7)0.150 (4)
H2WD0.18020.49460.36560.180*
H2WB0.10940.52530.42720.224*
O3W0.0267 (9)0.7040 (8)0.3693 (5)0.120 (3)
H3WD0.09880.68290.36810.144*
H3WA0.01360.65750.39370.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0444 (9)0.0364 (9)0.0429 (9)0.0072 (7)0.0111 (7)0.0118 (7)
Cl20.0412 (9)0.0478 (10)0.0426 (9)0.0115 (7)0.0131 (7)0.0021 (7)
Cu10.0350 (4)0.0388 (5)0.0352 (4)0.0085 (3)0.0097 (3)0.0019 (3)
Cu20.0359 (4)0.0376 (5)0.0352 (4)0.0013 (3)0.0082 (3)0.0003 (3)
C10.038 (3)0.045 (4)0.034 (3)0.009 (3)0.007 (3)0.010 (3)
C20.047 (4)0.039 (4)0.050 (4)0.003 (3)0.014 (3)0.014 (3)
C30.046 (4)0.036 (3)0.033 (3)0.005 (3)0.015 (3)0.016 (3)
C40.034 (3)0.040 (4)0.044 (4)0.003 (3)0.003 (3)0.005 (3)
C50.040 (3)0.039 (4)0.030 (3)0.017 (3)0.009 (3)0.010 (3)
C60.038 (4)0.042 (4)0.044 (4)0.012 (3)0.012 (3)0.006 (3)
C70.038 (3)0.043 (4)0.026 (3)0.002 (3)0.006 (3)0.003 (3)
C80.054 (4)0.032 (4)0.051 (4)0.007 (3)0.000 (3)0.008 (3)
C90.039 (4)0.038 (3)0.035 (3)0.007 (3)0.006 (3)0.001 (3)
C100.047 (4)0.028 (3)0.044 (4)0.016 (3)0.000 (3)0.007 (3)
C110.047 (4)0.035 (4)0.041 (4)0.011 (3)0.002 (3)0.016 (3)
C120.038 (4)0.031 (4)0.073 (5)0.002 (3)0.003 (3)0.008 (3)
C130.043 (4)0.047 (4)0.038 (4)0.005 (3)0.001 (3)0.005 (3)
C140.038 (3)0.032 (3)0.040 (4)0.011 (3)0.020 (3)0.017 (3)
N10.036 (3)0.040 (3)0.044 (3)0.009 (2)0.008 (2)0.015 (3)
N20.047 (3)0.042 (3)0.037 (3)0.007 (3)0.016 (3)0.002 (2)
N30.046 (3)0.039 (3)0.038 (3)0.002 (3)0.014 (2)0.007 (2)
N40.044 (3)0.045 (3)0.040 (3)0.020 (3)0.014 (3)0.010 (3)
O10.036 (2)0.043 (3)0.034 (2)0.001 (2)0.0127 (19)0.0118 (19)
O20.036 (2)0.032 (2)0.041 (2)0.0120 (19)0.0114 (19)0.0163 (19)
O1W0.139 (9)0.154 (9)0.141 (9)0.022 (7)0.014 (7)0.009 (7)
O2W0.133 (8)0.115 (8)0.208 (12)0.016 (6)0.076 (8)0.047 (8)
O3W0.123 (7)0.119 (7)0.118 (7)0.016 (6)0.000 (6)0.015 (6)
Geometric parameters (Å, º) top
Cl1—C81.763 (7)C7—C81.411 (10)
Cl2—Cu12.484 (2)C7—H70.9300
Cu1—O21.865 (4)C8—C91.420 (10)
Cu1—O11.941 (4)C9—C101.377 (9)
Cu1—N21.965 (6)C9—H90.9300
Cu1—N12.017 (6)C10—C111.408 (9)
Cu1—Cu23.0040 (18)C11—N31.319 (9)
Cu2—O21.797 (4)C11—H110.9300
Cu2—N41.994 (6)C12—N31.508 (9)
Cu2—O11.997 (5)C12—C131.542 (10)
Cu2—N32.048 (6)C12—H12A0.9700
C1—N11.498 (8)C12—H12B0.9700
C1—C21.524 (9)C13—C141.565 (9)
C1—H1A0.9700C13—H13A0.9700
C1—H1B0.9700C13—H13B0.9700
C2—C31.543 (10)C14—N41.496 (7)
C2—H2A0.9700C14—H14A0.9700
C2—H2B0.9700C14—H14B0.9700
C3—N21.503 (9)N1—H1C0.9000
C3—H3A0.9700N1—H1D0.9000
C3—H3B0.9700N4—H4A0.9000
C4—N21.333 (9)N4—H4B0.9000
C4—C61.384 (10)O1W—H1WD0.8501
C4—H40.9300O1W—H1WC0.8499
C5—O11.353 (8)O2W—H2WD0.8496
C5—C101.401 (10)O2W—H2WB0.8500
C5—C61.420 (9)O3W—H3WD0.8500
C6—C71.378 (10)O3W—H3WA0.8501
O2—Cu1—O174.6 (2)C7—C8—C9120.1 (6)
O2—Cu1—N2163.2 (2)C7—C8—Cl1119.4 (5)
O1—Cu1—N291.8 (2)C9—C8—Cl1120.5 (5)
O2—Cu1—N195.8 (2)C10—C9—C8119.0 (6)
O1—Cu1—N1167.6 (2)C10—C9—H9120.5
N2—Cu1—N196.2 (2)C8—C9—H9120.5
O2—Cu1—Cl297.57 (13)C9—C10—C5121.7 (6)
O1—Cu1—Cl290.79 (13)C9—C10—C11111.5 (6)
N2—Cu1—Cl292.30 (16)C5—C10—C11126.7 (6)
N1—Cu1—Cl298.30 (17)N3—C11—C10131.2 (7)
O2—Cu1—Cu234.16 (13)N3—C11—H11114.4
O1—Cu1—Cu241.00 (14)C10—C11—H11114.4
N2—Cu1—Cu2132.74 (18)N3—C12—C13117.3 (6)
N1—Cu1—Cu2129.95 (17)N3—C12—H12A108.0
Cl2—Cu1—Cu290.55 (6)C13—C12—H12A108.0
O2—Cu2—N497.5 (2)N3—C12—H12B108.0
O2—Cu2—O174.66 (19)C13—C12—H12B108.0
N4—Cu2—O1170.4 (2)H12A—C12—H12B107.2
O2—Cu2—N3165.6 (2)C12—C13—C14106.7 (5)
N4—Cu2—N395.9 (2)C12—C13—H13A110.4
O1—Cu2—N392.4 (2)C14—C13—H13A110.4
O2—Cu2—Cu135.64 (14)C12—C13—H13B110.4
N4—Cu2—Cu1133.09 (16)C14—C13—H13B110.4
O1—Cu2—Cu139.61 (13)H13A—C13—H13B108.6
N3—Cu2—Cu1130.51 (17)N4—C14—C13119.2 (5)
N1—C1—C2120.0 (6)N4—C14—H14A107.5
N1—C1—H1A107.3C13—C14—H14A107.5
C2—C1—H1A107.3N4—C14—H14B107.5
N1—C1—H1B107.3C13—C14—H14B107.5
C2—C1—H1B107.3H14A—C14—H14B107.0
H1A—C1—H1B106.9C1—N1—Cu1123.3 (4)
C1—C2—C3110.1 (6)C1—N1—H1C106.5
C1—C2—H2A109.6Cu1—N1—H1C106.5
C3—C2—H2A109.6C1—N1—H1D106.5
C1—C2—H2B109.6Cu1—N1—H1D106.5
C3—C2—H2B109.6H1C—N1—H1D106.5
H2A—C2—H2B108.2C4—N2—C3116.4 (6)
N2—C3—C2114.1 (5)C4—N2—Cu1123.3 (5)
N2—C3—H3A108.7C3—N2—Cu1120.2 (4)
C2—C3—H3A108.7C11—N3—C12123.0 (6)
N2—C3—H3B108.7C11—N3—Cu2119.3 (5)
C2—C3—H3B108.7C12—N3—Cu2117.5 (4)
H3A—C3—H3B107.6C14—N4—Cu2123.4 (4)
N2—C4—C6126.7 (6)C14—N4—H4A106.5
N2—C4—H4116.7Cu2—N4—H4A106.5
C6—C4—H4116.7C14—N4—H4B106.5
O1—C5—C10119.5 (6)Cu2—N4—H4B106.5
O1—C5—C6121.8 (6)H4A—N4—H4B106.5
C10—C5—C6118.7 (6)C5—O1—Cu1124.8 (4)
C7—C6—C4114.4 (6)C5—O1—Cu2129.2 (4)
C7—C6—C5120.6 (7)Cu1—O1—Cu299.4 (2)
C4—C6—C5124.8 (7)Cu2—O2—Cu1110.2 (2)
C6—C7—C8119.8 (6)H1WD—O1W—H1WC109.5
C6—C7—H7120.1H2WD—O2W—H2WB109.5
C8—C7—H7120.1H3WD—O3W—H3WA109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WD···Cl10.851.902.583 (12)136
O2W—H2WB···O3W0.852.573.114 (13)123
O3W—H3WD···Cl20.852.703.478 (10)152

Experimental details

Crystal data
Chemical formula[Cu2(C14H20ClN4O)ClO]·3H2O
Mr528.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)11.201 (5), 12.387 (7), 16.718 (7)
β (°) 93.18 (4)
V3)2316.0 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.572, 0.633
No. of measured, independent and
observed [I > 2σ(I)] reflections
12029, 4087, 3286
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.175, 1.02
No. of reflections4087
No. of parameters244
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.080P)2 + 12.660P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.65, 0.94

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WD···Cl10.851.902.583 (12)135.9
O2W—H2WB···O3W0.852.573.114 (13)123.0
O3W—H3WD···Cl20.852.703.478 (10)151.9
 

Acknowledgements

The authors would like to thank the National Science Foundation of China (Nos. 21171135 and 20971102).

References

First citationAnbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V. & Varghese, B. (2009). J. Inorg. Biochem. 103, 401–410.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAsokan, A., Mandal, P., Varghese, B. & Manoharan, P. T. (1995). Chem. Sci. 107, 281–295.  CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDede, B., Ozmen, I. & Karipcin, F. (2009). Polyhedron, 28, 3967–3974.  Web of Science CrossRef CAS Google Scholar
First citationGagne, R. R., Spiro, C. L., Smith, T. J., Hamann, C. A., Thies, W. R. & Shiemke, A. K. (1981). J. Am. Chem. Soc. 103, 4073–4081.  CrossRef CAS Web of Science Google Scholar
First citationHao, Y. L., Yao, L., Zhang, W. & Cui, Q. X. Yu. Z. W. (2006). Chem. Res. 17, 16–18.  CAS Google Scholar
First citationOlmstead, M. M., Boyce, D. W. & Bria, L. E. (2011). Acta Cryst. E67, m824–m825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaman, N., Raja, J. D. & Sakthivel, A. (2007). J. Chem. Sci. 119, 303–310.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, J. L., Feng, L., Gu, W., Xu, G. J., Yan, S. P., Liao, D. Z., Jiang, Z. H. & Cheng, P. (2007). J. Inorg. Biochem. 101, 196–202.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVeysel, T. Y., Sevim, H. & Omer, A. (2003). Transition Met. Chem. 28, 676–681.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m794-m795
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds