organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-[(4-chloro­benzyl­­idene)amino]­phenol

aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, bKilis 7 Aralık University, Vocational High School of Health Services, Department of Opticianry, 79000 Kilis, Turkey, and cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey
*Correspondence e-mail: kursatefil@gmail.com

(Received 27 April 2012; accepted 2 May 2012; online 12 May 2012)

In the title Schiff base compound, C13H9Cl2NO, the mol­ecule displays an E conformation about the imine C=N double bond, with a dihedral angle of 8.09 (11)° between the two benzene rings. In the crystal, mol­ecules are linked by a single O—H⋯O hydrogen bond, giving one-dimensional chains which extend along (100).

Related literature

For related Schiff base compounds and applications, see: Asiri & Khan (2010[Asiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850-6858.]); Bekircan et al. (2006[Bekircan, O., Kahveci, B. & Küçük, M. (2006). Turk. J. Chem. 30, 29-40.]); Faridbod et al. (2008[Faridbod, F., Ganjali, M. R., Dinarvand, R., Norouzi, P. & Riahi, S. (2008). Sensors, 8, 1645-1703.]); Fun et al. (2009[Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349-o350.]); Ghanwate et al. (2008[Ghanwate, N. A., Raut, A. W. & Doshi, A. G. (2008). Orient. J. Chem. 24, 721-724.]); Jarrahpour et al. (2007[Jarrahpour, A., Khalili, D., Clercq, E. D., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Shi et al. (2007[Shi, L., Ge, H. M., Tan, S. H., Li, H. Q., Song, Y. C., Zhu, H. L. & Tan, R. X. (2007). Eur. J. Med. Chem. 42, 558-564.]); Zhao et al. (2010[Zhao, Q., Shen, C., Zheng, H., Zhang, J. & Zhang, P. (2010). Carbohydr. Res. 345, 437-441.]). For related structures, see: Xu et al. (2009[Xu, H.-J., Tan, Q.-Y., Cui, L.-J. & Qian, K. (2009). Acta Cryst. E65, o945.]); Zhou et al. (2009[Zhou, J.-C., Zhang, Z.-Y., Li, N.-X. & Zhang, C.-M. (2009). Acta Cryst. E65, o3091.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Orthorhombic, P 21 21 21

  • a = 4.6615 (2) Å

  • b = 10.5375 (5) Å

  • c = 25.2153 (15) Å

  • V = 1238.59 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 296 K

  • 0.53 × 0.41 × 0.31 mm

Data collection
  • Stoe IPDS 2 Image-Plate diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.815, Tmax = 0.882

  • 2562 measured reflections

  • 2562 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.082

  • S = 0.93

  • 2562 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1024 Friedel pairs

  • Flack parameter: 0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.86 (3) 2.36 (3) 3.040 (2) 136 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The compounds containing the CN group, are known as Schiff bases (also imines or azomethines), are generally synthesized by condensation of primary amines with active carbonyl compounds (Asiri & Khan, 2010; Faridbod et al., 2008). The reaction is acid-catalyzed and is usually performed by refluxing the carbonyl compound and amine (Layer, 1963). These compounds show biological activity as antitumor (Zhao, et al., 2010), anticancer (Bekircan, et al., 2006), antifungal (Shi, et al., 2007), antimicrobial (Ghanwate, et al., 2008) or antiviral agents (Jarrahpour, et al., 2007), furthermore they are used as intermediates and ligands in the formation of a complex with some metal ions (Fun et al., 2009). As part of our ongoing study of the structural relationships between the compounds containing Schiff bases, a crystal structure determination of the title compound, C13H9Cl2NO, has been undertaken and the results are presented here.

The structure of the title compound (Fig. 1) is similar to those of analogous derivatives (Xu et al., 2009; Zhou et al., 2009) and displays a trans configuration with respect to the imine CN with a C8—C7—N1—C1 torsion angle of 179.19 (18)°. The molecule is close to planar, as indicated by the dihedral angle between the two benzene rings [8.09 (11)°]. The crystal packing is stabilized by a single intermolecular O—H···O hydrogen-bonding interaction (Table 1, Fig. 2), giving a one-dimensional chain structure which extends down (100) (Fig. 3). An intramolecular O—H···N interaction is also present.

Related literature top

For related Schiff base compounds and applications, see: Asiri & Khan (2010); Bekircan et al. (2006); Faridbod et al. (2008); Fun et al. (2009); Ghanwate et al. (2008); Jarrahpour et al. (2007); Layer (1963); Shi et al. (2007); Zhao et al. (2010). For related structures, see: Xu et al. (2009); Zhou et al. (2009).

Experimental top

4-Chlorobenzaldehyde (0.141 g; 1 mmol), 2-hydroxy-5-chloroaniline (0.144 g; 1 mmol) and two drops of β-ethoxyethanol as a wetting solvent were mixed in a beaker and then exposed to microwaves in an oven (360 W). It was observed that the reaction was completed within 2 minutes (thin layer chromatography). The resulting solid product was washed with cold ethanol and recrystallized from ethanol, giving the title compound. Yield: 92%, m.p. 396–398 °K.

Refinement top

The H-atom of the hydroxy group was located from a difference-Fourier map and both positional and isotropic displacement paramenters were refined. Other H-atoms were positioned geometrically and treated using a riding model, with C—H = 0.93 Å and with the displacement parameters Uiso(H) = 1.2Ueq(C). The absolute structure factor (Flack, 1983), although not significant in this structure, was determined as 0.01 (7), using 1028 Friedel pairs.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom- numbering scheme, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the O—H···N and O—H···O interactions as dashed lines.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the a axis. The O—H···O and O—H···N interactions are shown as dashed lines.
4-Chloro-2-[(4-chlorobenzylidene)amino]phenol top
Crystal data top
C13H9Cl2NODx = 1.427 Mg m3
Mr = 266.11Melting point = 396–398 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16508 reflections
a = 4.6615 (2) Åθ = 1.6–27.2°
b = 10.5375 (5) ŵ = 0.51 mm1
c = 25.2153 (15) ÅT = 296 K
V = 1238.59 (11) Å3Prism, brown
Z = 40.53 × 0.41 × 0.31 mm
F(000) = 544
Data collection top
Stoe IPDS 2 CCD
diffractometer
2562 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
rotation method scansθmax = 26.5°, θmin = 1.6°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 55
Tmin = 0.815, Tmax = 0.882k = 1313
2562 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2562 reflectionsΔρmax = 0.21 e Å3
159 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1024 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C13H9Cl2NOV = 1238.59 (11) Å3
Mr = 266.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.6615 (2) ŵ = 0.51 mm1
b = 10.5375 (5) ÅT = 296 K
c = 25.2153 (15) Å0.53 × 0.41 × 0.31 mm
Data collection top
Stoe IPDS 2 CCD
diffractometer
2562 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1910 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.882Rint = 0.037
2562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.21 e Å3
S = 0.93Δρmin = 0.24 e Å3
2562 reflectionsAbsolute structure: Flack (1983), 1024 Friedel pairs
159 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Experimental. IR: 3071, 2911, 1626 (C=N),1586, 1568, 1478, 1423, 1369, 1271, 1238, 1194, 1154, 1082, 1009, 909, 856, 812, 696, 607 cm-1. 1H NMR (CDCl3): δ 8.66 (s, 1H, N=CH), 7.91 (d, J = 8.4 Hz, 2H, Ar), 7.54 (d, J = 8.4 Hz, 2H, Ar), 7.34 (s, 1H, Ar), 7.24 (d, J = 8.6 Hz, 1H, Ar), 7.02 (d, J = 8.6 Hz, 1H, Ar). 13CNMR (CDCl3): δ 156.75 (N=C), 150.94, 138.21, 135.86, 133.87, 130.06, 129.28, 128.77, 125.07, 116.19. Elemental Anal. Calcd for C13H9Cl2NO: C, 58,67; H, 3,41; N, 5,26. Found: C, 57.74; H, 3.42; N, 5.26%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1216 (4)0.47092 (19)0.57988 (7)0.0537 (5)
C20.2380 (5)0.4456 (2)0.53004 (8)0.0616 (6)
C30.4413 (6)0.5255 (3)0.50863 (9)0.0769 (6)
H30.51680.50820.47530.092*
C40.5333 (6)0.6303 (2)0.53591 (9)0.0760 (7)
H40.67100.68390.52130.091*
C50.4197 (6)0.6552 (2)0.58495 (9)0.0713 (6)
C60.2162 (5)0.5778 (2)0.60712 (8)0.0628 (6)
H60.14140.59680.64040.075*
C70.1973 (5)0.3864 (2)0.64196 (7)0.0561 (5)
H70.14150.45050.66510.067*
C80.4106 (4)0.29397 (18)0.65979 (7)0.0523 (4)
C90.5145 (5)0.2984 (2)0.71173 (8)0.0653 (6)
H90.44800.36120.73460.078*
C100.7136 (5)0.2117 (2)0.72989 (8)0.0663 (6)
H100.78270.21630.76440.080*
C110.8069 (5)0.1196 (2)0.69631 (8)0.0606 (5)
C120.7106 (5)0.1122 (2)0.64475 (8)0.0634 (6)
H120.77920.04930.62220.076*
C130.5123 (5)0.19875 (19)0.62699 (7)0.0605 (5)
H130.44520.19330.59230.073*
N10.0866 (4)0.38240 (15)0.59657 (6)0.0554 (4)
O10.1527 (4)0.34241 (18)0.50249 (6)0.0813 (5)
Cl10.5403 (2)0.78790 (6)0.61993 (3)0.1114 (3)
Cl21.05363 (14)0.00872 (6)0.71919 (3)0.0847 (2)
H10.021 (6)0.303 (2)0.5193 (9)0.088 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0469 (11)0.0618 (12)0.0525 (10)0.0110 (10)0.0007 (9)0.0069 (9)
C20.0571 (13)0.0738 (14)0.0538 (11)0.0057 (11)0.0013 (10)0.0010 (10)
C30.0699 (14)0.1008 (17)0.0599 (12)0.0012 (16)0.0072 (12)0.0118 (12)
C40.0673 (15)0.0796 (15)0.0810 (15)0.0034 (14)0.0001 (14)0.0274 (12)
C50.0709 (14)0.0595 (12)0.0834 (14)0.0046 (13)0.0028 (13)0.0115 (11)
C60.0658 (14)0.0580 (12)0.0646 (12)0.0084 (11)0.0036 (12)0.0010 (10)
C70.0544 (12)0.0618 (12)0.0522 (10)0.0065 (11)0.0008 (10)0.0054 (9)
C80.0465 (11)0.0578 (10)0.0526 (9)0.0073 (10)0.0004 (9)0.0009 (9)
C90.0635 (14)0.0747 (13)0.0578 (11)0.0046 (12)0.0047 (11)0.0110 (10)
C100.0597 (13)0.0806 (15)0.0586 (11)0.0007 (13)0.0060 (11)0.0009 (11)
C110.0520 (12)0.0595 (12)0.0704 (13)0.0066 (10)0.0059 (11)0.0149 (10)
C120.0680 (14)0.0581 (12)0.0642 (12)0.0003 (11)0.0127 (11)0.0008 (10)
C130.0696 (14)0.0629 (11)0.0490 (10)0.0084 (12)0.0022 (10)0.0001 (9)
N10.0556 (10)0.0584 (9)0.0521 (9)0.0072 (9)0.0013 (8)0.0006 (7)
O10.0827 (12)0.1033 (13)0.0580 (8)0.0137 (10)0.0125 (9)0.0136 (9)
Cl10.1263 (7)0.0703 (4)0.1377 (6)0.0207 (5)0.0080 (6)0.0116 (4)
Cl20.0697 (3)0.0794 (4)0.1051 (4)0.0080 (4)0.0068 (3)0.0285 (3)
Geometric parameters (Å, º) top
C1—C61.391 (3)C7—H70.9300
C1—C21.395 (3)C8—C131.384 (3)
C1—N11.411 (3)C8—C91.397 (3)
C2—O11.350 (3)C9—C101.381 (3)
C2—C31.378 (3)C9—H90.9300
C3—C41.370 (3)C10—C111.359 (3)
C3—H30.9300C10—H100.9300
C4—C51.371 (3)C11—C121.378 (3)
C4—H40.9300C11—Cl21.738 (2)
C5—C61.370 (3)C12—C131.374 (3)
C5—Cl11.746 (2)C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.256 (2)O1—H10.86 (3)
C7—C81.462 (3)
C6—C1—C2118.48 (19)C13—C8—C9117.77 (19)
C6—C1—N1127.32 (18)C13—C8—C7122.12 (17)
C2—C1—N1114.19 (18)C9—C8—C7120.10 (18)
O1—C2—C3119.6 (2)C10—C9—C8121.4 (2)
O1—C2—C1120.2 (2)C10—C9—H9119.3
C3—C2—C1120.2 (2)C8—C9—H9119.3
C4—C3—C2120.8 (2)C11—C10—C9118.75 (19)
C4—C3—H3119.6C11—C10—H10120.6
C2—C3—H3119.6C9—C10—H10120.6
C3—C4—C5119.1 (2)C10—C11—C12121.6 (2)
C3—C4—H4120.5C10—C11—Cl2119.01 (16)
C5—C4—H4120.5C12—C11—Cl2119.37 (18)
C6—C5—C4121.5 (2)C13—C12—C11119.3 (2)
C6—C5—Cl1119.56 (19)C13—C12—H12120.4
C4—C5—Cl1119.0 (2)C11—C12—H12120.4
C5—C6—C1120.0 (2)C12—C13—C8121.13 (18)
C5—C6—H6120.0C12—C13—H13119.4
C1—C6—H6120.0C8—C13—H13119.4
N1—C7—C8122.50 (19)C7—N1—C1122.18 (17)
N1—C7—H7118.8C2—O1—H1110.6 (17)
C8—C7—H7118.8
C6—C1—C2—O1179.7 (2)N1—C7—C8—C9176.3 (2)
N1—C1—C2—O11.0 (3)C13—C8—C9—C100.5 (3)
C6—C1—C2—C30.2 (3)C7—C8—C9—C10179.33 (19)
N1—C1—C2—C3179.2 (2)C8—C9—C10—C110.7 (3)
O1—C2—C3—C4179.5 (2)C9—C10—C11—C120.9 (3)
C1—C2—C3—C40.4 (4)C9—C10—C11—Cl2179.06 (16)
C2—C3—C4—C50.2 (4)C10—C11—C12—C131.0 (3)
C3—C4—C5—C60.2 (4)Cl2—C11—C12—C13179.01 (16)
C3—C4—C5—Cl1179.31 (19)C11—C12—C13—C80.8 (3)
C4—C5—C6—C10.3 (4)C9—C8—C13—C120.6 (3)
Cl1—C5—C6—C1179.12 (17)C7—C8—C13—C12179.35 (19)
C2—C1—C6—C50.2 (3)C8—C7—N1—C1179.19 (18)
N1—C1—C6—C5179.4 (2)C6—C1—N1—C75.9 (3)
N1—C7—C8—C132.5 (3)C2—C1—N1—C7174.84 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (3)2.18 (2)2.655 (2)115 (2)
O1—H1···O1i0.86 (3)2.36 (3)3.040 (2)136 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.6615 (2), 10.5375 (5), 25.2153 (15)
V3)1238.59 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.53 × 0.41 × 0.31
Data collection
DiffractometerStoe IPDS 2 CCD
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.815, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
2562, 2562, 1910
Rint0.037
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 0.93
No. of reflections2562
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.24
Absolute structureFlack (1983), 1024 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.86 (3)2.36 (3)3.040 (2)136 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

References

First citationAsiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850–6858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBekircan, O., Kahveci, B. & Küçük, M. (2006). Turk. J. Chem. 30, 29–40.  CAS Google Scholar
First citationFaridbod, F., Ganjali, M. R., Dinarvand, R., Norouzi, P. & Riahi, S. (2008). Sensors, 8, 1645–1703.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhanwate, N. A., Raut, A. W. & Doshi, A. G. (2008). Orient. J. Chem. 24, 721–724.  CAS Google Scholar
First citationJarrahpour, A., Khalili, D., Clercq, E. D., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Ge, H. M., Tan, S. H., Li, H. Q., Song, Y. C., Zhu, H. L. & Tan, R. X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXu, H.-J., Tan, Q.-Y., Cui, L.-J. & Qian, K. (2009). Acta Cryst. E65, o945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q., Shen, C., Zheng, H., Zhang, J. & Zhang, P. (2010). Carbohydr. Res. 345, 437–441.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, J.-C., Zhang, Z.-Y., Li, N.-X. & Zhang, C.-M. (2009). Acta Cryst. E65, o3091.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds