

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-2,2'-Bis(diphenylphosphanyl)-1,1'binaphthyl: a racemic diphosphine ligand

Feng Niu,^a Wenxiang Chai,^a* Li Song,^b Mengbo Zhou^a and Jiaping Liang^a

^aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and ^bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China

Correspondence e-mail: wxchai_cm@yahoo.com.cn

Received 3 June 2012; accepted 5 June 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.099; data-to-parameter ratio = 14.7.

The asymmetric unit of the title compound, $C_{44}H_{32}P_2$, conventionally abbreviated BINAP, is one half of the complete chiral BINAP molecule, which adopts a C2 crystallographic point-group symmetry with a twofold axis splitting the molecule in two identical halves; a center of symmetry between molecules further determines the racemic pairs. There are no obvious supramolecular interactions between adjacent BINAP molecules.

Related literature

For applications of triarylphosphine ligands in various catalytic reactions, see: Doherty *et al.* (2012); Uemura *et al.* (2012); Onodera *et al.* (2012); Lin *et al.* (2012). For applications of 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP) as a chiral catalyst in various asymmetric catalysed reactions, see: Kojima & Mikami (2012); Aikawa *et al.* (2011); Ge & Hartwig (2011); Moran *et al.* (2011). For similar diphosphine ligands, see: Kassube *et al.* (2008); Fawcett *et al.* (2005); Wu *et al.* (2004). For the related crystal structure of the (S)-enantiomer (S)-(-)-2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl, see: Jones *et al.* (2003).

organic compounds

Experimental

Crystal data

Ν

$C_{44}H_{32}P_2$	V = 3283.7 (2) Å ³
$A_r = 622.64$	Z = 4
Aonoclinic, $C2/c$	Mo $K\alpha$ radiation
= 19.6120 (8) Å	$\mu = 0.16 \text{ mm}^{-1}$
= 9.2008 (3) Å	T = 293 K
= 19.1240 (9) Å	$0.29 \times 0.23 \times 0.20$ mm
$B = 107.904 \ (5)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur Gemini ultra diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.954, T_{max} = 0.968$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.099$ S = 1.033052 reflections 6234 measured reflections 3052 independent reflections 2314 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

208 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.22$ e Å⁻³ $\Delta \rho_{min} = -0.22$ e Å⁻³

Data collection: CrysAlis PRO (Oxford Diffraction, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful for financial support from the National Natural Science Foundation of China (projects 11075147 and 51002147) and the Natural Science Foundation of Zhejiang Province (project Y4100610 and LY12E02010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2467).

References

- Aikawa, K., Hioki, Y., Shimizu, N. & Mikami, K. (2011). J. Am. Chem. Soc. 133, 20092–20095.
- Doherty, S., Knight, J. G. & Mehdi-Zodeh, H. (2012). *Tetrahedron Asymmetry*, **23**, 209–216.
- Fawcett, J., Hope, E. G., Stuart, A. M. & West, A. J. (2005). Acta Cryst. E61, o2484–o2485.
- Ge, S.-Z. & Hartwig, J. F. (2011). J. Am. Chem. Soc. 133, 16330-16333.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jones, M. D., Almeida Paz, F. A., Davies, J. E. & Johnson, B. F. G. (2003). Acta Cryst. E59, 0535–0537.
- Kassube, J. K., Wadepohl, H. & Gade, L. H. (2008). Adv. Synth. Catal. 350, 1155–1162.
- Kojima, M. & Mikami, K. (2012). Synlett, 23, 57-61.
- Lin, M., Kang, G.-Y. G. Y.-A. & Yu, Z.-X. (2012). J. Am. Chem. Soc. 134, 398–405.
- Moran, J., Smith, A. G., Carris, R. M., Johnson, J. S. & Krische, M. J. (2011). J. Am. Chem. Soc. 133, 18618–18621.
- Onodera, G., Suto, M. & Takeuchi, R. (2012). J. Org. Chem. 77, 908-920.
- Oxford Diffraction (2011). *CrysAlis PRO*. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Uemura, M., Kurono, N. & Ohkuma, T. (2012). Org. Lett. 14, 882-885.
- Wu, H.-C., Yu, J.-Q. & Spencer, J. B. (2004). Org. Lett. 6, 4675-4678.

supporting information

Acta Cryst. (2012). E68, o2033 [https://doi.org/10.1107/S1600536812025603] *rac-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl: a racemic diphosphine ligand* Feng Niu, Wenxiang Chai, Li Song, Mengbo Zhou and Jiaping Liang

S1. Comment

In the past decades, the triarylphosphine ligands have been well known for their high catalytic activity and high selectivity, and have thus been widely used in various types of reactions, *e.g.*, asymmetrical hydrogen catalysis, Buchwald-Hartwig C—N and C—O formations and Suzuki coupling reactions, *etc* (Doherty *et al.* 2012; Uemura *et al.* 2012; Onodera *et al.* 2012; Lin *et al.* 2012). Among them, 2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP), a diphosphine ligand, is well known for its chirality, and has been used as chiral catalyst in various asymmetry catalyzed reaction (Kojima *et al.* 2012; Aikawa *et al.* 2011; Ge *et al.* 2011; Moran *et al.* 2011). Previously, Jones *M.* D. *etc* reported the crystal structure of the (S)-enantiomer (*S*)-(-)-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (Jones *et al.* 2003). But the crystal structure of the racemic BINAP crystal had not been reported so far. Here we report the crystal structure of the racemic BINAP crystal had not been reported some useful structural information for its chiral separation and high catalytic activity / selectivity.

The title compound crystallizes in the centrosymmetric C2/c space group. The asymmetric unit is one half of complete chiral BINAP molecule, the symmetry related part being generated by a twofold rotational axis running along *b* and across the middle of two moities in the molecule (Fig 1). This structure is similar to the previously reported one for the (S)-enantiomer (S)-(-)-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (Jones *et al.* 2003). In the present case, however, there are inversion centers relating molecules into racemic pairs. No obvious supramolecular interactions are present in the crystal structure of (1), which packing diagram is shown in Fig 2.

S2. Experimental

Crystals of the title compound were obtained by recrystalization of racemic 2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl, obtained from Acros Organics as a commerical material: the racemic powders were dissolved in dichloromethane, and after being filtrated some isopropyl alcohol was layered on the resulting solution. After several days, a crop of colorless crystals of (I) were abtained, fron where specimens suitable for single-crystal X-ray diffraction were selected.

S3. Refinement

All aromatoc hydrogen atoms were added at calculated positions (C-H: 0.93Å) and refined using a riding model with U(H)iso = $1.2 \times U(C)$ equiv.

Figure 1

A view of the structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probabilithy level, and H atoms shown as small spheres of arbitrary radii.

Figure 2

The packing diagram of I, viewed along the c-direction.

rac-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl

Crystal data

F(000) = 1304 $C_{44}H_{32}P_2$ $M_r = 622.64$ $D_{\rm x} = 1.259 {\rm Mg m^{-3}}$ Monoclinic, C2/cMo *K* α radiation, $\lambda = 0.71070$ Å Hall symbol: -C 2yc Cell parameters from 2381 reflections $\theta = 3.5 - 29.5^{\circ}$ *a* = 19.6120 (8) Å $\mu = 0.16 \text{ mm}^{-1}$ *b* = 9.2008 (3) Å c = 19.1240 (9) Å T = 293 K $\beta = 107.904 (5)^{\circ}$ Column, colourless $V = 3283.7 (2) \text{ Å}^3$ $0.29 \times 0.23 \times 0.20 \text{ mm}$ Z = 4Data collection Oxford Diffraction Xcalibur Gemini ultra 6234 measured reflections diffractometer 3052 independent reflections Radiation source: Enhance (Mo) X-ray Source 2314 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.026$ $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ $h = -19 \rightarrow 23$ Detector resolution: 10.3592 pixels mm⁻¹ ω scans Absorption correction: multi-scan $k = -9 \rightarrow 11$ (ABSCOR; Higashi, 1995) $l = -20 \rightarrow 23$ $T_{\rm min} = 0.954, \ T_{\rm max} = 0.968$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.03	H-atom parameters constrained
3052 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2 + 1.4219P]$
208 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.22 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.43987 (2)	0.96498 (5)	0.13904 (3)	0.03969 (16)
C1	0.41174 (9)	1.08276 (19)	0.20272 (9)	0.0348 (4)
C2	0.46167 (8)	1.17151 (17)	0.25019 (9)	0.0316 (4)
C3	0.44162 (9)	1.26196 (19)	0.30150 (9)	0.0368 (4)
C4	0.49012 (11)	1.3589 (2)	0.34918 (11)	0.0492 (5)
H4	0.5364	1.3677	0.3463	0.059*
C5	0.47017 (14)	1.4398 (3)	0.39936 (12)	0.0680 (7)
Н5	0.5027	1.5037	0.4299	0.082*
C6	0.40094 (15)	1.4271 (3)	0.40508 (13)	0.0718 (7)
H6	0.3882	1.4804	0.4405	0.086*
C7	0.35255 (13)	1.3379 (2)	0.35949 (13)	0.0609 (6)
H7	0.3066	1.3314	0.3636	0.073*
C8	0.37053 (10)	1.2543 (2)	0.30552 (11)	0.0434 (5)
С9	0.32087 (10)	1.1626 (2)	0.25612 (12)	0.0489 (5)
Н9	0.2740	1.1582	0.2576	0.059*
C10	0.34033 (9)	1.0807 (2)	0.20647 (11)	0.0450 (5)
H10	0.3063	1.0219	0.1742	0.054*
C11	0.38645 (9)	0.8015 (2)	0.13995 (11)	0.0422 (5)
C12	0.39753 (10)	0.7322 (2)	0.20704 (12)	0.0524 (5)
H12	0.4278	0.7746	0.2494	0.063*
C13	0.36481 (11)	0.6022 (2)	0.21238 (13)	0.0581 (6)
H13	0.3728	0.5583	0.2580	0.070*
C14	0.32063 (12)	0.5375 (2)	0.15075 (15)	0.0634 (6)
H14	0.2987	0.4493	0.1543	0.076*
C15	0.30870 (12)	0.6029 (2)	0.08377 (15)	0.0686 (7)

H15	0.2786	0.5588	0.0418	0.082*	
C16	0.34129 (11)	0.7350 (2)	0.07787 (12)	0.0585 (6)	
H16	0.3327	0.7787	0.0321	0.070*	
C17	0.39622 (9)	1.0482 (2)	0.04936 (10)	0.0404 (4)	
C18	0.35445 (10)	1.1731 (2)	0.03891 (11)	0.0472 (5)	
H18	0.3428	1.2137	0.0783	0.057*	
C19	0.32997 (11)	1.2376 (2)	-0.02968 (12)	0.0573 (6)	
H19	0.3017	1.3206	-0.0359	0.069*	
C20	0.34691 (12)	1.1805 (3)	-0.08887 (12)	0.0617 (6)	
H20	0.3309	1.2253	-0.1346	0.074*	
C21	0.38763 (12)	1.0571 (3)	-0.07949 (12)	0.0611 (6)	
H21	0.3987	1.0171	-0.1193	0.073*	
C22	0.41240 (11)	0.9914 (2)	-0.01138 (12)	0.0529 (5)	
H22	0.4403	0.9079	-0.0059	0.063*	

Atomic displacement parameters (A^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
P1	0.0373 (3)	0.0378 (3)	0.0424 (3)	-0.0027 (2)	0.0100 (2)	-0.0060 (2)
C1	0.0349 (9)	0.0343 (9)	0.0348 (10)	0.0003 (8)	0.0099 (8)	0.0037 (8)
C2	0.0341 (9)	0.0289 (9)	0.0321 (10)	0.0028 (7)	0.0106 (7)	0.0057 (7)
C3	0.0449 (10)	0.0330 (9)	0.0338 (10)	0.0092 (8)	0.0139 (8)	0.0087 (8)
C4	0.0547 (12)	0.0490 (12)	0.0414 (12)	0.0092 (10)	0.0112 (9)	-0.0061 (10)
C5	0.0838 (17)	0.0663 (15)	0.0498 (14)	0.0151 (13)	0.0146 (12)	-0.0185 (12)
C6	0.099 (2)	0.0709 (16)	0.0539 (15)	0.0304 (15)	0.0354 (14)	-0.0065 (13)
C7	0.0728 (15)	0.0642 (14)	0.0584 (15)	0.0275 (13)	0.0386 (13)	0.0129 (12)
C8	0.0505 (11)	0.0415 (11)	0.0445 (11)	0.0136 (9)	0.0240 (9)	0.0132 (9)
С9	0.0374 (10)	0.0544 (12)	0.0615 (14)	0.0078 (10)	0.0248 (10)	0.0153 (11)
C10	0.0340 (10)	0.0461 (11)	0.0538 (13)	-0.0030 (9)	0.0120 (9)	0.0049 (10)
C11	0.0372 (10)	0.0371 (10)	0.0491 (12)	0.0027 (8)	0.0086 (9)	-0.0020 (9)
C12	0.0511 (12)	0.0467 (12)	0.0545 (14)	-0.0014 (10)	0.0091 (10)	0.0005 (10)
C13	0.0571 (13)	0.0457 (12)	0.0712 (16)	0.0027 (11)	0.0193 (12)	0.0126 (12)
C14	0.0590 (14)	0.0376 (11)	0.094 (2)	-0.0063 (11)	0.0240 (13)	0.0040 (13)
C15	0.0681 (15)	0.0488 (13)	0.0762 (18)	-0.0184 (12)	0.0035 (13)	-0.0153 (13)
C16	0.0642 (13)	0.0484 (12)	0.0534 (14)	-0.0097 (11)	0.0040 (11)	-0.0036 (11)
C17	0.0399 (10)	0.0405 (10)	0.0417 (11)	-0.0104 (9)	0.0138 (8)	-0.0061 (9)
C18	0.0494 (11)	0.0485 (12)	0.0453 (12)	-0.0019 (10)	0.0168 (9)	0.0004 (10)
C19	0.0561 (12)	0.0542 (13)	0.0612 (15)	-0.0013 (11)	0.0176 (11)	0.0115 (12)
C20	0.0645 (14)	0.0730 (16)	0.0449 (14)	-0.0165 (13)	0.0130 (11)	0.0066 (12)
C21	0.0715 (15)	0.0713 (16)	0.0437 (13)	-0.0170 (13)	0.0223 (11)	-0.0128 (12)
C22	0.0576 (13)	0.0511 (12)	0.0516 (13)	-0.0071 (10)	0.0191 (10)	-0.0106 (10)

Geometric parameters (Å, °)

P1—C17	1.833 (2)	C11—C12	1.389 (3)	
P1—C11	1.8364 (19)	C12—C13	1.376 (3)	
P1—C1	1.8370 (18)	C12—H12	0.9300	
C1—C2	1.380 (2)	C13—C14	1.366 (3)	

C1—C10	1.424 (2)	С13—Н13	0.9300
C2—C3	1.431 (2)	C14—C15	1.369 (3)
$C2-C2^{i}$	1.506 (3)	C14—H14	0.9300
C3—C4	1.414 (3)	C15—C16	1.394 (3)
C3—C8	1.421 (2)	С15—Н15	0.9300
C4—C5	1.363 (3)	C16—H16	0.9300
C4—H4	0.9300	C17—C18	1.389 (3)
C5—C6	1.400 (3)	C17—C22	1.397 (3)
C5—H5	0.9300	C18—C19	1.384 (3)
C6—C7	1 351 (3)	C18—H18	0.9300
С6—Н6	0.9300	C_{19} C_{20}	1.378(3)
C7-C8	1416(3)	C19_H19	0.9300
C7 H7	0.0300	C_{20} C_{21}	1 368 (3)
C_{1}^{2}	1,410 (3)	$C_{20} = C_{21}$	0.0300
C_{0}	1.410(3)	$C_{20} = 1120$	1.382(2)
C_{9}	1.550 (5)	$C_{21} = C_{22}$	1.362(3)
	0.9300	C21—H21	0.9300
	0.9300	C22—H22	0.9300
C11—C16	1.386 (3)		
C17—P1—C11	104 33 (8)	C12_C11_P1	117 20 (14)
C17 - P1 - C1	107.99(8)	$C_{12} = C_{11} = C_{11}$	117.20(14) 121.6(2)
C_{11} P_{1} C_{1}	102.99(8)	$C_{13}^{12} C_{12}^{12} H_{12}^{12}$	121.0 (2)
C_{1} C_{1} C_{10}	100.87(8) 110.00(16)	$C_{13} - C_{12} - H_{12}$	119.2
$C_2 = C_1 = C_{10}$	119.00(10) 110.22(12)	C14 - C12 - C12	119.2
	119.25 (12)	C14 - C13 - C12	120.1 (2)
C10-C1-P1	121./2 (14)	C14—C13—H13	119.9
C1—C2—C3	120.43 (15)	С12—С13—Н13	119.9
$C1-C2-C2^{1}$	120.30 (15)	C13—C14—C15	119.7 (2)
$C3-C2-C2^{1}$	119.25 (15)	C13—C14—H14	120.1
C4—C3—C8	118.24 (17)	C15—C14—H14	120.1
C4—C3—C2	122.49 (16)	C14—C15—C16	120.6 (2)
C8—C3—C2	119.27 (16)	C14—C15—H15	119.7
C5—C4—C3	121.1 (2)	C16—C15—H15	119.7
C5—C4—H4	119.4	C11—C16—C15	120.2 (2)
C3—C4—H4	119.4	C11—C16—H16	119.9
C4—C5—C6	120.3 (2)	C15—C16—H16	119.9
C4—C5—H5	119.8	C18—C17—C22	117.69 (19)
С6—С5—Н5	119.8	C18—C17—P1	124.43 (15)
C7—C6—C5	120.4 (2)	C22—C17—P1	117.50 (15)
С7—С6—Н6	119.8	C19—C18—C17	120.55 (19)
С5—С6—Н6	119.8	C19—C18—H18	119.7
C6—C7—C8	121.2 (2)	C17—C18—H18	119.7
С6—С7—Н7	119.4	C20—C19—C18	120.9 (2)
С8—С7—Н7	119.4	С20—С19—Н19	119.5
C9—C8—C7	122.56 (19)	C18—C19—H19	119.5
C9—C8—C3	118.73 (17)	C21—C20—C19	119.1 (2)
C7—C8—C3	118.71 (19)	C21—C20—H20	120.4
C10-C9-C8	121.12 (17)	C19—C20—H20	120.4
С10—С9—Н9	119.4	C20—C21—C22	120.6 (2)
	/ • •		

supporting information

С8—С9—Н9	119.4	C20—C21—H21	119.7	
C9-C10-C1	121.37 (18)	C22—C21—H21	119.7	
C9-C10-H10	119.3	C21—C22—C17	121.1 (2)	
C1-C10-H10	119.3	C21—C22—H22	119.5	
C16—C11—C12	117.79 (18)	C17—C22—H22	119.5	
C16-C11-P1	124.71 (16)			

Symmetry code: (i) -x+1, *y*, -z+1/2.