organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[(E)-2,3-Dihy­dr­oxy­benzyl­­idene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene­sulfonamide

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Pharmacy Services, Jinnah Hospital, Lahore, Pakistan, and cDepartment of Chemistry, Forman Christian College, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 June 2012; accepted 12 June 2012; online 16 June 2012)

In the title compound, C17H15N3O5S, the 2,3-dihy­droxy­benzaldehyde unit is oriented at a dihedral angles of 16.83 (10) and 78.87 (6)° with the anilinic and 5-methyl-1,2-oxazol-3-amine groups, respectively. An S(6) loop exists due to intramolecular O—H⋯N hydrogen bonding. In the crystal, inversion dimers with R22(8) rings are formed due to N—H⋯N hydrogen bonding between the 5-methyl-1,2-oxazol-3-amine groups. These dimers are inter­linked by O—H⋯O hydrogen bonds, forming chains along [101] and resulting in R22(26) rings. ππ inter­actions occur between the central benzene rings with a centroid–centroid distance of 3.7928 (16) Å.

Related literature

For related structures, see: Ebenezer & Muthiah (2010[Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2574.]); Yildiz et al. (2010[Yildiz, M., Ünver, H., Erdener, D. & Iskeleli, N. O. (2010). J. Chem. Crystallogr. 40, 691-695.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3O5S

  • Mr = 373.38

  • Triclinic, [P \overline 1]

  • a = 7.1881 (6) Å

  • b = 10.6682 (10) Å

  • c = 11.6865 (9) Å

  • α = 92.181 (4)°

  • β = 99.776 (4)°

  • γ = 99.606 (5)°

  • V = 868.74 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.25 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.966

  • 12511 measured reflections

  • 3389 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.00

  • 3389 reflections

  • 245 parameters

  • All H-atom parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.99 (4) 1.66 (4) 2.588 (3) 155 (3)
O2—H2⋯O4i 0.79 (4) 2.11 (5) 2.848 (3) 154 (5)
N2—H2A⋯N3ii 0.84 (3) 2.05 (3) 2.881 (3) 172 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized for the biological studies and forming different metal complexes. The crystal structures of 4-((2-hydroxybenzylidene)amino)-N-(5-methyl-1, 2-oxazol-3-yl)benzenesulfonamide (Ebenezer & Muthiah, 2010) and 4-((2-hydroxy-3-methoxybenzylidene)amino)-N-(5-methyl-1,2-oxazol-3-yl) benzenesulfonamide (Yildiz et al., 2010) have been published previously which are related to the title compound.

In (I), the parts of 2,3-dihydroxybenzaldehyde A (C1—C7/O1/O2), annilinic group B (C8—C13/N1) and 5-methyl-1,2-oxazol-3-amine C (C14—C17/N2/N3/O5) are planar with r. m. s. deviations of 0.0057 Å, 0.0055 Å and 0.0198 Å, respectively. The dihedral angles between A/B, A/C and B/C are 16.83 (10)°, 78.87 (6)° and 80.41 (6)°, respectively. The sulfonyl group D (O3/S1/O4) is of course planar. The dihedral angles between A/D, B/D and C/D are 49.52 (8)°, 52.65 (9)° and 29.35 (14)°, respectively. In (I), S(6) ring motif (Bernstein et al., 1995) is present due to H-bonding of O—H···N type, (Table 1, Fig. 1). The molecules are dimerized from 5-methyl-1,2-oxazol-3-amine groups due to H-bondings of N—H···N type with R22(8) ring motif (Table 1, Fig. 2). The dimers are interlinked due to H-bondings of O—H···O type with R22(26) ring motif (Table 1, Fig. 2) and therefore, one-dimensional polymeric chains is formed along the base vector [1 0 1]. There exist ππ interaction between Cg1···Cg1i [i = 1 - x, 1 - y, 1 - z] at a distance of 3.7928 (16) Å, where Cg1 is the centroid of benzene ring (C8—C13).

Related literature top

For related structures, see: Ebenezer & Muthiah (2010); Yildiz et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 4-amino-N-(5-methylisoxazol-3-yl)-benzenesulfonamide (Sulfamethoxazole) and 2,3-dihydroxybenzaldehyde were refluxed in methanol along with few drops of acetic acid as catalyst for 1 h. The solution was kept at room temperature which afforded red prisms after two days.

Refinement top

In the absence of anomalous scattering factor, the Friedel pairs were merged. The coordinates of amide and hydroxy H-atoms were refined. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy & methyl and x = 1.2 for other H-atoms.

Structure description top

The title compound (I), (Fig. 1) has been synthesized for the biological studies and forming different metal complexes. The crystal structures of 4-((2-hydroxybenzylidene)amino)-N-(5-methyl-1, 2-oxazol-3-yl)benzenesulfonamide (Ebenezer & Muthiah, 2010) and 4-((2-hydroxy-3-methoxybenzylidene)amino)-N-(5-methyl-1,2-oxazol-3-yl) benzenesulfonamide (Yildiz et al., 2010) have been published previously which are related to the title compound.

In (I), the parts of 2,3-dihydroxybenzaldehyde A (C1—C7/O1/O2), annilinic group B (C8—C13/N1) and 5-methyl-1,2-oxazol-3-amine C (C14—C17/N2/N3/O5) are planar with r. m. s. deviations of 0.0057 Å, 0.0055 Å and 0.0198 Å, respectively. The dihedral angles between A/B, A/C and B/C are 16.83 (10)°, 78.87 (6)° and 80.41 (6)°, respectively. The sulfonyl group D (O3/S1/O4) is of course planar. The dihedral angles between A/D, B/D and C/D are 49.52 (8)°, 52.65 (9)° and 29.35 (14)°, respectively. In (I), S(6) ring motif (Bernstein et al., 1995) is present due to H-bonding of O—H···N type, (Table 1, Fig. 1). The molecules are dimerized from 5-methyl-1,2-oxazol-3-amine groups due to H-bondings of N—H···N type with R22(8) ring motif (Table 1, Fig. 2). The dimers are interlinked due to H-bondings of O—H···O type with R22(26) ring motif (Table 1, Fig. 2) and therefore, one-dimensional polymeric chains is formed along the base vector [1 0 1]. There exist ππ interaction between Cg1···Cg1i [i = 1 - x, 1 - y, 1 - z] at a distance of 3.7928 (16) Å, where Cg1 is the centroid of benzene ring (C8—C13).

For related structures, see: Ebenezer & Muthiah (2010); Yildiz et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The dotted line represent the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers.
4-{[(E)-2,3-Dihydroxybenzylidene]amino}- N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide top
Crystal data top
C17H15N3O5SZ = 2
Mr = 373.38F(000) = 388
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1881 (6) ÅCell parameters from 2704 reflections
b = 10.6682 (10) Åθ = 1.8–26.0°
c = 11.6865 (9) ŵ = 0.22 mm1
α = 92.181 (4)°T = 296 K
β = 99.776 (4)°Prism, red
γ = 99.606 (5)°0.25 × 0.18 × 0.16 mm
V = 868.74 (13) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3389 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.957, Tmax = 0.966l = 1414
12511 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0529P)2]
where P = (Fo2 + 2Fc2)/3
3389 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H15N3O5Sγ = 99.606 (5)°
Mr = 373.38V = 868.74 (13) Å3
Triclinic, P1Z = 2
a = 7.1881 (6) ÅMo Kα radiation
b = 10.6682 (10) ŵ = 0.22 mm1
c = 11.6865 (9) ÅT = 296 K
α = 92.181 (4)°0.25 × 0.18 × 0.16 mm
β = 99.776 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3389 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2004 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.966Rint = 0.048
12511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.121All H-atom parameters refined
S = 1.00Δρmax = 0.19 e Å3
3389 reflectionsΔρmin = 0.27 e Å3
245 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72001 (10)0.57361 (7)0.76687 (5)0.0470 (3)
O10.2827 (3)0.2045 (2)0.35929 (18)0.0731 (8)
O20.5837 (4)0.0532 (2)0.2208 (3)0.1008 (11)
O30.8978 (2)0.54264 (18)0.74645 (14)0.0586 (7)
O40.6855 (3)0.70107 (17)0.75951 (15)0.0566 (7)
O50.6964 (3)0.27141 (18)1.05698 (15)0.0627 (8)
N10.0732 (3)0.2368 (2)0.45973 (17)0.0504 (8)
N20.6991 (3)0.5411 (2)0.89993 (17)0.0455 (8)
N30.6258 (3)0.3814 (2)1.02145 (19)0.0578 (9)
C10.0786 (4)0.0495 (3)0.3390 (2)0.0482 (10)
C20.2552 (4)0.0909 (3)0.3158 (2)0.0539 (11)
C30.4110 (4)0.0144 (3)0.2441 (3)0.0661 (12)
C40.3908 (5)0.1007 (3)0.1984 (3)0.0723 (12)
C50.2166 (5)0.1433 (3)0.2209 (3)0.0711 (14)
C60.0622 (5)0.0683 (3)0.2899 (2)0.0616 (11)
C70.0824 (4)0.1275 (3)0.4135 (2)0.0534 (11)
C80.2336 (4)0.3133 (3)0.5313 (2)0.0454 (9)
C90.1979 (4)0.4123 (3)0.6001 (2)0.0505 (10)
C100.3444 (4)0.4908 (3)0.6723 (2)0.0498 (10)
C110.5320 (3)0.4718 (2)0.67560 (19)0.0433 (9)
C120.5690 (4)0.3743 (3)0.6069 (2)0.0536 (10)
C130.4211 (4)0.2965 (3)0.5342 (2)0.0561 (11)
C140.7297 (3)0.4260 (2)0.9455 (2)0.0409 (9)
C150.8621 (4)0.3492 (3)0.9277 (2)0.0497 (10)
C160.8378 (4)0.2557 (3)0.9987 (2)0.0507 (10)
C170.9254 (5)0.1416 (3)1.0241 (3)0.0722 (14)
H10.157 (5)0.237 (3)0.409 (3)0.1096*
H20.575 (7)0.128 (4)0.232 (4)0.1510*
H2A0.610 (4)0.571 (3)0.923 (2)0.0545*
H40.495390.151760.151390.0867*
H50.204990.222240.189120.0852*
H60.054870.096280.304250.0738*
H70.197680.097410.428760.0641*
H90.072570.425470.597070.0606*
H100.318780.556250.718710.0597*
H120.694370.361110.609860.0643*
H130.447060.232110.486570.0669*
H150.949020.360740.876820.0596*
H17A0.956860.136841.106850.1083*
H17B1.039980.147280.991260.1083*
H17C0.836400.066680.990780.1083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0425 (4)0.0536 (5)0.0455 (4)0.0087 (3)0.0085 (3)0.0062 (3)
O10.0544 (14)0.0700 (15)0.0902 (15)0.0144 (12)0.0028 (11)0.0234 (12)
O20.0566 (16)0.0831 (19)0.148 (2)0.0095 (15)0.0128 (14)0.0255 (18)
O30.0377 (11)0.0792 (15)0.0621 (11)0.0119 (10)0.0168 (8)0.0039 (10)
O40.0608 (13)0.0453 (12)0.0637 (12)0.0103 (10)0.0087 (9)0.0122 (9)
O50.0777 (15)0.0611 (14)0.0611 (12)0.0310 (12)0.0245 (10)0.0172 (10)
N10.0495 (15)0.0590 (16)0.0416 (12)0.0078 (12)0.0073 (10)0.0002 (12)
N20.0463 (15)0.0529 (15)0.0410 (12)0.0177 (12)0.0094 (10)0.0050 (11)
N30.0693 (17)0.0581 (16)0.0585 (14)0.0326 (14)0.0229 (12)0.0175 (12)
C10.0533 (18)0.0474 (18)0.0447 (15)0.0087 (15)0.0107 (12)0.0060 (13)
C20.058 (2)0.0494 (19)0.0536 (16)0.0082 (16)0.0106 (13)0.0029 (14)
C30.054 (2)0.057 (2)0.083 (2)0.0067 (17)0.0054 (16)0.0046 (18)
C40.072 (2)0.051 (2)0.084 (2)0.0021 (18)0.0013 (18)0.0057 (18)
C50.090 (3)0.047 (2)0.076 (2)0.010 (2)0.0170 (19)0.0004 (17)
C60.071 (2)0.0500 (19)0.0683 (19)0.0191 (17)0.0161 (16)0.0089 (16)
C70.0518 (19)0.063 (2)0.0486 (16)0.0157 (16)0.0105 (13)0.0131 (15)
C80.0436 (17)0.0556 (18)0.0382 (14)0.0119 (14)0.0065 (12)0.0068 (13)
C90.0434 (17)0.0560 (19)0.0530 (16)0.0113 (15)0.0089 (13)0.0041 (14)
C100.0477 (18)0.0520 (18)0.0518 (16)0.0141 (14)0.0109 (13)0.0016 (14)
C110.0425 (16)0.0496 (17)0.0388 (13)0.0097 (13)0.0072 (11)0.0083 (12)
C120.0431 (17)0.072 (2)0.0496 (16)0.0197 (16)0.0110 (13)0.0007 (15)
C130.056 (2)0.068 (2)0.0453 (15)0.0146 (16)0.0111 (13)0.0086 (14)
C140.0392 (15)0.0433 (16)0.0387 (14)0.0112 (13)0.0002 (11)0.0024 (12)
C150.0443 (17)0.0561 (19)0.0518 (16)0.0171 (15)0.0094 (12)0.0038 (14)
C160.0521 (18)0.0532 (19)0.0472 (15)0.0178 (15)0.0025 (13)0.0011 (14)
C170.091 (3)0.064 (2)0.072 (2)0.040 (2)0.0165 (17)0.0122 (17)
Geometric parameters (Å, º) top
S1—O31.4275 (17)C8—C91.387 (4)
S1—O41.426 (2)C8—C131.384 (4)
S1—N21.632 (2)C9—C101.368 (4)
S1—C111.754 (2)C10—C111.391 (4)
O1—C21.354 (4)C11—C121.378 (4)
O2—C31.361 (4)C12—C131.373 (4)
O5—N31.404 (3)C14—C151.391 (4)
O5—C161.345 (4)C15—C161.330 (4)
O1—H10.99 (4)C16—C171.479 (5)
O2—H20.79 (4)C4—H40.9300
N1—C81.415 (4)C5—H50.9300
N1—C71.283 (4)C6—H60.9300
N2—C141.393 (3)C7—H70.9300
N3—C141.308 (3)C9—H90.9300
N2—H2A0.84 (3)C10—H100.9300
C1—C21.400 (4)C12—H120.9300
C1—C71.439 (4)C13—H130.9300
C1—C61.393 (4)C15—H150.9300
C2—C31.395 (4)C17—H17A0.9600
C3—C41.360 (5)C17—H17B0.9600
C4—C51.390 (5)C17—H17C0.9600
C5—C61.369 (5)
O3—S1—O4120.39 (13)S1—C11—C10119.41 (18)
O3—S1—N2107.74 (11)C11—C12—C13120.1 (3)
O3—S1—C11108.71 (11)C8—C13—C12120.4 (3)
O4—S1—N2104.10 (11)N2—C14—N3117.6 (2)
O4—S1—C11108.69 (11)N2—C14—C15130.5 (2)
N2—S1—C11106.32 (11)N3—C14—C15111.9 (2)
N3—O5—C16108.6 (2)C14—C15—C16105.4 (2)
C2—O1—H1101.8 (19)O5—C16—C17115.6 (3)
C3—O2—H2113 (4)C15—C16—C17135.0 (3)
C7—N1—C8122.0 (2)O5—C16—C15109.4 (3)
S1—N2—C14123.00 (17)C3—C4—H4119.00
O5—N3—C14104.68 (19)C5—C4—H4119.00
C14—N2—H2A114 (2)C4—C5—H5120.00
S1—N2—H2A113.1 (17)C6—C5—H5120.00
C6—C1—C7120.8 (3)C1—C6—H6120.00
C2—C1—C7120.2 (3)C5—C6—H6120.00
C2—C1—C6119.0 (3)N1—C7—H7119.00
O1—C2—C3117.5 (3)C1—C7—H7119.00
C1—C2—C3119.8 (3)C8—C9—H9119.00
O1—C2—C1122.7 (3)C10—C9—H9120.00
O2—C3—C2120.6 (3)C9—C10—H10120.00
O2—C3—C4119.7 (3)C11—C10—H10120.00
C2—C3—C4119.7 (3)C11—C12—H12120.00
C3—C4—C5121.1 (3)C13—C12—H12120.00
C4—C5—C6119.6 (3)C8—C13—H13120.00
C1—C6—C5120.7 (3)C12—C13—H13120.00
N1—C7—C1122.7 (3)C14—C15—H15127.00
N1—C8—C9117.0 (3)C16—C15—H15127.00
N1—C8—C13124.0 (3)C16—C17—H17A109.00
C9—C8—C13119.0 (3)C16—C17—H17B109.00
C8—C9—C10121.0 (3)C16—C17—H17C109.00
C9—C10—C11119.4 (3)H17A—C17—H17B109.00
S1—C11—C12120.56 (19)H17A—C17—H17C109.00
C10—C11—C12120.0 (2)H17B—C17—H17C110.00
O3—S1—N2—C1448.5 (2)C2—C1—C7—N11.1 (4)
O4—S1—N2—C14177.4 (2)C6—C1—C7—N1179.6 (3)
C11—S1—N2—C1467.9 (2)O1—C2—C3—O20.8 (4)
O3—S1—C11—C10174.45 (19)O1—C2—C3—C4179.9 (3)
O3—S1—C11—C125.1 (2)C1—C2—C3—O2179.9 (3)
O4—S1—C11—C1041.7 (2)C1—C2—C3—C40.8 (5)
O4—S1—C11—C12137.8 (2)O2—C3—C4—C5179.7 (3)
N2—S1—C11—C1069.8 (2)C2—C3—C4—C50.6 (5)
N2—S1—C11—C12110.7 (2)C3—C4—C5—C60.2 (5)
C16—O5—N3—C140.8 (3)C4—C5—C6—C10.9 (5)
N3—O5—C16—C150.0 (3)N1—C8—C9—C10179.8 (2)
N3—O5—C16—C17178.6 (2)C13—C8—C9—C101.6 (4)
C8—N1—C7—C1179.0 (2)N1—C8—C13—C12179.5 (3)
C7—N1—C8—C9163.9 (3)C9—C8—C13—C122.0 (4)
C7—N1—C8—C1317.6 (4)C8—C9—C10—C110.8 (4)
S1—N2—C14—N3146.5 (2)C9—C10—C11—S1179.3 (2)
S1—N2—C14—C1536.6 (4)C9—C10—C11—C120.3 (4)
O5—N3—C14—N2176.12 (19)S1—C11—C12—C13178.9 (2)
O5—N3—C14—C151.3 (3)C10—C11—C12—C130.7 (4)
C6—C1—C2—O1179.4 (2)C11—C12—C13—C81.6 (4)
C6—C1—C2—C30.2 (4)N2—C14—C15—C16175.6 (2)
C7—C1—C2—O11.2 (4)N3—C14—C15—C161.3 (3)
C7—C1—C2—C3179.6 (3)C14—C15—C16—O50.8 (3)
C2—C1—C6—C50.7 (4)C14—C15—C16—C17179.0 (3)
C7—C1—C6—C5178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.99 (4)1.66 (4)2.588 (3)155 (3)
O2—H2···O4i0.79 (4)2.11 (5)2.848 (3)154 (5)
N2—H2A···N3ii0.84 (3)2.05 (3)2.881 (3)172 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H15N3O5S
Mr373.38
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1881 (6), 10.6682 (10), 11.6865 (9)
α, β, γ (°)92.181 (4), 99.776 (4), 99.606 (5)
V3)868.74 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
12511, 3389, 2004
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.00
No. of reflections3389
No. of parameters245
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.99 (4)1.66 (4)2.588 (3)155 (3)
O2—H2···O4i0.79 (4)2.11 (5)2.848 (3)154 (5)
N2—H2A···N3ii0.84 (3)2.05 (3)2.881 (3)172 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYildiz, M., Ünver, H., Erdener, D. & Iskeleli, N. O. (2010). J. Chem. Crystallogr. 40, 691–695.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds