organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­chloro-5,8-dimeth­­oxy-1,4-naphtho­quinone

aDepartment of Chemistry, Howard University, 525 College Street, NW, Washington, DC, 2059 USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 23 May 2012; accepted 25 May 2012; online 13 June 2012)

In the crystal structure of the title compound, C12H8Cl2O4, mol­ecules crystallize in planes parallel to (-204) with an inter­planar distance of 3.288 (2) Å [centroid–centroid distance = 3.819 (2) and slippage = 1.932 (2) Å]. The structure features C—H⋯O inter­actions involving meth­oxy and aromatic H atoms and the carbonyl O atoms as well as a C—H⋯Cl inter­action involving an aromatic H atom. In addition there are short inter­halogen contacts between adjoining mol­ecules [Cl⋯Cl = 3.3709 (5) Å].

Related literature

For biological properties of the title compound, see: Huang et al. (1998[Huang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (1998). Bioorg. Med. Chem. 6, 2261-2269.]); Copeland et al. (2007[Copeland, R. L., Das, J. R., Bakare, O., Enwerem, N. M., Berhe, S., Hillaire, K., White, D., Beyene, D., Kassim, O. O. & Kanaan, Y. M. (2007). Anticancer Res. 27, 1537-1546.]); Lien et al. (1997[Lien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. 5, o2111-o2120.]). For structures of related 2,3-dichloro-1,4-naphtho­quinone derivatives, see: Ikemoto et al. (1977[Ikemoto, I., Yakushi, K., Naito, Y., Kuroda, H. & Sano, M. (1977). Acta Cryst. B33, 2076-2079.]); Rubio et al. (1985[Rubio, P., Florencio, F., García-Blanco, S. & Rodriguez, J. G. (1985). Acta Cryst. C41, 1797-1799.]). For quinoid systems, see: Driebergen et al. (1986[Driebergen, R. J., Holthuis, J. J. M., Hulshoff, A., Postma-Kelder, S. J., Verboom, W., Reinhoudt, D. N. & Lelieveld, P. (1986). Anticancer Res. 6, 605-620.]); Scheuermann et al. (2009[Scheuermann, S., Sarkar, B., Bolte, M., Bats, J. W., Lerner, H.-W. & Wagner, M. (2009). Inorg. Chem. 48, 9385-9392.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl2O4

  • Mr = 287.08

  • Monoclinic, C 2/c

  • a = 9.9366 (2) Å

  • b = 15.6564 (3) Å

  • c = 14.8505 (3) Å

  • β = 103.782 (2)°

  • V = 2243.79 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.27 mm−1

  • T = 123 K

  • 0.81 × 0.30 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.154, Tmax = 0.418

  • 8037 measured reflections

  • 2199 independent reflections

  • 2156 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.09

  • 2199 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Cl2i 0.95 2.72 3.6593 (14) 169
C8—H8A⋯O2i 0.95 2.54 3.3337 (18) 142
C11—H11C⋯O1ii 0.98 2.62 3.4030 (19) 137
C12—H12A⋯O1iii 0.98 2.49 3.3723 (19) 149
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds with the methoxy and chloro groups on the 1, 4-naphthoquinone skeleton were reported to show inhibitory effects on cancerous cells (Huang et al., 1998; Lien et al., 1997). 2,3-Dichloro-5,8-dimethoxy-1,4-naphthoquinone, C12H8Cl2O4, was synthesized as a potential anticancer agent and has been reported to exhibit anti-inflammatory, antiplatelet, anti-allergic and anticancer activities (Huang et al., 1998; Copeland et al., 2007). This biological function is based on chemical properties inherent in molecule. To understand its biological behavior, therefore, it is of great importance to determine the structural property and its molecular dimensions. The methoxy and chloro group in the quinoid ring give it interesting redox and biological properties as well as an excellent coordination site (Driebergen et al., 1986; Scheuermann et al., 2009). The coordinating potential of the molecule could be used as a tool for the formation of new organometallic compounds (Scheuermann et al., 2009).

The molecules in the title compound crystallize in planes parallel to (-2 0 4) with an interplanar distance of 3.288Å forming a charge transfer complex. The distance between the overlapping planes of neighboring molecules is 3.385 (3) Å and 3.653 (3) Å. There are intermolecular interactions between both a methoxy hydrogen and an aromatic hydrogen and the carbonyl O atoms. Intermolecular interactions are also observed between chlorine atom and the aromatic and methoxy H atoms. In addition there are short interhalogen contacts between adjoining molecules (Cl1···Cl2 3.3709 (5) Å) These C—H···Cl, C—H···O and Cl···Cl interactions in the crystal structure link the molecules to produce a three dimensional network.

Related literature top

For biological properties of the title compound, see: Huang et al. (1998); Copeland et al. (2007); Lien et al. (1997). For structures of related 2,3-dichloro-1,4-naphthoquinone derivatives, see: Ikemoto et al. (1977); Rubio et al. (1985). For quinoid systems, see: Driebergen et al. (1986); Scheuermann et al. (2009)

Experimental top

2,3-Dichloro-5,8-dimethoxy-1,4-naphthoquinone (DDNQ) was synthesized as described by Huang (Huang et al., 1998). The reaction of dichloromaleic anhydride and 1,4-dimethoxybenzene produces a mixture of 6,7-dichloro-5,8-dihydroxy-1,4-naphthoquinone and 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone. o-Methylation of 6,7-dichloro-5,8-dihydroxy-1,4-naphthoquinone and 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone with methyl iodide-silver oxide produces the mixture of 6,7-dichloro-5,8-dimethoxy-1,4-naphthoquinone (1) and 2,3-dichloro-5,8-dimethoxy-1,4-naphthoquinone (2). The mixture of 1 and 2 were separated by column chromatography on silica gel to obtain pure 2,3-dichloro-5,8-dimethoxy-1,4-naphthoquinone (DDNQ). Solid DDNQ was recrystallized in dichloromethane to produce X-ray diffraction quality crystals.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Structure description top

Compounds with the methoxy and chloro groups on the 1, 4-naphthoquinone skeleton were reported to show inhibitory effects on cancerous cells (Huang et al., 1998; Lien et al., 1997). 2,3-Dichloro-5,8-dimethoxy-1,4-naphthoquinone, C12H8Cl2O4, was synthesized as a potential anticancer agent and has been reported to exhibit anti-inflammatory, antiplatelet, anti-allergic and anticancer activities (Huang et al., 1998; Copeland et al., 2007). This biological function is based on chemical properties inherent in molecule. To understand its biological behavior, therefore, it is of great importance to determine the structural property and its molecular dimensions. The methoxy and chloro group in the quinoid ring give it interesting redox and biological properties as well as an excellent coordination site (Driebergen et al., 1986; Scheuermann et al., 2009). The coordinating potential of the molecule could be used as a tool for the formation of new organometallic compounds (Scheuermann et al., 2009).

The molecules in the title compound crystallize in planes parallel to (-2 0 4) with an interplanar distance of 3.288Å forming a charge transfer complex. The distance between the overlapping planes of neighboring molecules is 3.385 (3) Å and 3.653 (3) Å. There are intermolecular interactions between both a methoxy hydrogen and an aromatic hydrogen and the carbonyl O atoms. Intermolecular interactions are also observed between chlorine atom and the aromatic and methoxy H atoms. In addition there are short interhalogen contacts between adjoining molecules (Cl1···Cl2 3.3709 (5) Å) These C—H···Cl, C—H···O and Cl···Cl interactions in the crystal structure link the molecules to produce a three dimensional network.

For biological properties of the title compound, see: Huang et al. (1998); Copeland et al. (2007); Lien et al. (1997). For structures of related 2,3-dichloro-1,4-naphthoquinone derivatives, see: Ikemoto et al. (1977); Rubio et al. (1985). For quinoid systems, see: Driebergen et al. (1986); Scheuermann et al. (2009)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C12H8Cl2O4 with atomic displacement parameters drawn at 30% probability.
[Figure 2] Fig. 2. The molecular packing for C12H8Cl2O4 viewed along the c axis.
2,3-Dichloro-5,8-dimethoxy-1,4-naphthoquinone top
Crystal data top
C12H8Cl2O4F(000) = 1168
Mr = 287.08Dx = 1.700 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 6065 reflections
a = 9.9366 (2) Åθ = 3.1–72.4°
b = 15.6564 (3) ŵ = 5.27 mm1
c = 14.8505 (3) ÅT = 123 K
β = 103.782 (2)°Slab, pink
V = 2243.79 (8) Å30.81 × 0.30 × 0.23 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2199 independent reflections
Radiation source: Enhance (Cu) X-ray Source2156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 72.5°, θmin = 5.4°
ω scansh = 1212
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1918
Tmin = 0.154, Tmax = 0.418l = 1318
8037 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.7012P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2199 reflectionsΔρmax = 0.31 e Å3
166 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00077 (11)
Crystal data top
C12H8Cl2O4V = 2243.79 (8) Å3
Mr = 287.08Z = 8
Monoclinic, C2/cCu Kα radiation
a = 9.9366 (2) ŵ = 5.27 mm1
b = 15.6564 (3) ÅT = 123 K
c = 14.8505 (3) Å0.81 × 0.30 × 0.23 mm
β = 103.782 (2)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2199 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2007)
2156 reflections with I > 2σ(I)
Tmin = 0.154, Tmax = 0.418Rint = 0.024
8037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2199 reflectionsΔρmin = 0.27 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22986 (3)0.61933 (2)0.50894 (2)0.02353 (13)
Cl20.47240 (4)0.73207 (2)0.62182 (2)0.02670 (14)
O10.29765 (11)0.44185 (6)0.51438 (7)0.0247 (2)
O20.70729 (11)0.63328 (7)0.71429 (7)0.0256 (2)
O30.83562 (11)0.50132 (7)0.79392 (7)0.0266 (3)
O40.41728 (11)0.30361 (6)0.58176 (7)0.0246 (2)
C10.39013 (13)0.48023 (9)0.56736 (9)0.0163 (3)
C20.37962 (13)0.57504 (9)0.57239 (9)0.0163 (3)
C30.48343 (14)0.62303 (8)0.62041 (9)0.0169 (3)
C40.61546 (13)0.58551 (9)0.67577 (9)0.0166 (3)
C50.62262 (13)0.49062 (9)0.68126 (9)0.0160 (3)
C60.73632 (14)0.45098 (9)0.74118 (9)0.0194 (3)
C70.74226 (15)0.36157 (10)0.74499 (10)0.0233 (3)
H7A0.81920.33460.78520.028*
C80.63901 (16)0.31218 (9)0.69163 (10)0.0232 (3)
H8A0.64670.25170.69460.028*
C90.52280 (15)0.34971 (9)0.63305 (10)0.0193 (3)
C100.51411 (14)0.43964 (9)0.62756 (9)0.0162 (3)
C110.94626 (15)0.46147 (11)0.86031 (11)0.0291 (3)
H11A1.00870.50540.89390.044*
H11B0.99780.42350.82820.044*
H11C0.90790.42820.90420.044*
C120.42089 (18)0.21201 (9)0.59175 (12)0.0295 (3)
H12A0.33700.18730.55180.044*
H12B0.42550.19700.65650.044*
H12C0.50270.18940.57370.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01650 (19)0.0218 (2)0.0275 (2)0.00482 (11)0.00425 (14)0.00124 (12)
Cl20.0297 (2)0.01223 (19)0.0314 (2)0.00149 (12)0.00606 (15)0.00074 (12)
O10.0218 (5)0.0195 (5)0.0281 (5)0.0027 (4)0.0033 (4)0.0024 (4)
O20.0204 (5)0.0211 (5)0.0300 (6)0.0041 (4)0.0045 (4)0.0011 (4)
O30.0190 (5)0.0279 (6)0.0263 (5)0.0043 (4)0.0075 (4)0.0011 (4)
O40.0260 (5)0.0131 (5)0.0331 (6)0.0016 (4)0.0036 (4)0.0014 (4)
C10.0152 (6)0.0171 (7)0.0167 (6)0.0015 (5)0.0041 (5)0.0003 (5)
C20.0131 (6)0.0182 (7)0.0163 (6)0.0032 (5)0.0009 (5)0.0019 (5)
C30.0194 (7)0.0124 (7)0.0182 (7)0.0012 (5)0.0030 (5)0.0004 (5)
C40.0156 (6)0.0192 (7)0.0146 (6)0.0003 (5)0.0024 (5)0.0004 (5)
C50.0146 (6)0.0173 (7)0.0164 (6)0.0024 (5)0.0041 (5)0.0015 (5)
C60.0165 (6)0.0238 (7)0.0181 (7)0.0029 (5)0.0042 (5)0.0014 (5)
C70.0196 (7)0.0248 (7)0.0256 (7)0.0093 (6)0.0055 (6)0.0090 (6)
C80.0244 (7)0.0172 (7)0.0298 (8)0.0050 (5)0.0104 (6)0.0059 (6)
C90.0201 (7)0.0177 (7)0.0214 (7)0.0006 (5)0.0076 (5)0.0009 (5)
C100.0168 (6)0.0155 (7)0.0172 (6)0.0011 (5)0.0057 (5)0.0010 (5)
C110.0202 (7)0.0375 (9)0.0244 (7)0.0104 (6)0.0050 (6)0.0029 (6)
C120.0359 (9)0.0140 (7)0.0406 (9)0.0018 (6)0.0129 (7)0.0020 (6)
Geometric parameters (Å, º) top
Cl1—C21.7074 (13)C5—C101.4233 (19)
Cl2—C31.7111 (13)C6—C71.402 (2)
O1—C11.2166 (17)C7—C81.375 (2)
O2—C41.2126 (17)C7—H7A0.9500
O3—C61.3564 (18)C8—C91.399 (2)
O3—C111.4331 (17)C8—H8A0.9500
O4—C91.3492 (18)C9—C101.4117 (18)
O4—C121.4413 (17)C11—H11A0.9800
C1—C101.4819 (19)C11—H11B0.9800
C1—C21.4911 (18)C11—H11C0.9800
C2—C31.3367 (19)C12—H12A0.9800
C3—C41.4927 (18)C12—H12B0.9800
C4—C51.4886 (18)C12—H12C0.9800
C5—C61.4052 (19)
C6—O3—C11118.53 (12)C6—C7—H7A119.3
C9—O4—C12118.51 (12)C7—C8—C9120.94 (13)
O1—C1—C10124.72 (13)C7—C8—H8A119.5
O1—C1—C2118.22 (12)C9—C8—H8A119.5
C10—C1—C2117.05 (11)O4—C9—C8122.80 (13)
C3—C2—C1122.14 (12)O4—C9—C10118.19 (12)
C3—C2—Cl1121.77 (11)C8—C9—C10119.00 (13)
C1—C2—Cl1116.03 (10)C9—C10—C5119.95 (12)
C2—C3—C4122.54 (12)C9—C10—C1119.55 (12)
C2—C3—Cl2121.59 (11)C5—C10—C1120.49 (12)
C4—C3—Cl2115.87 (10)O3—C11—H11A109.5
O2—C4—C5124.68 (12)O3—C11—H11B109.5
O2—C4—C3118.74 (12)H11A—C11—H11B109.5
C5—C4—C3116.56 (11)O3—C11—H11C109.5
C6—C5—C10119.64 (13)H11A—C11—H11C109.5
C6—C5—C4119.75 (12)H11B—C11—H11C109.5
C10—C5—C4120.60 (12)O4—C12—H12A109.5
O3—C6—C7122.63 (13)O4—C12—H12B109.5
O3—C6—C5118.27 (13)H12A—C12—H12B109.5
C7—C6—C5119.10 (13)O4—C12—H12C109.5
C8—C7—C6121.33 (13)H12A—C12—H12C109.5
C8—C7—H7A119.3H12B—C12—H12C109.5
O1—C1—C2—C3172.16 (13)C4—C5—C6—C7179.42 (12)
C10—C1—C2—C37.53 (19)O3—C6—C7—C8179.06 (13)
O1—C1—C2—Cl15.05 (16)C5—C6—C7—C80.2 (2)
C10—C1—C2—Cl1175.27 (9)C6—C7—C8—C91.4 (2)
C1—C2—C3—C42.5 (2)C12—O4—C9—C83.6 (2)
Cl1—C2—C3—C4179.59 (10)C12—O4—C9—C10175.82 (12)
C1—C2—C3—Cl2177.39 (10)C7—C8—C9—O4177.91 (13)
Cl1—C2—C3—Cl20.34 (17)C7—C8—C9—C101.5 (2)
C2—C3—C4—O2176.86 (13)O4—C9—C10—C5179.39 (12)
Cl2—C3—C4—O23.09 (17)C8—C9—C10—C50.06 (19)
C2—C3—C4—C54.63 (19)O4—C9—C10—C10.79 (18)
Cl2—C3—C4—C5175.42 (9)C8—C9—C10—C1178.66 (12)
O2—C4—C5—C66.3 (2)C6—C5—C10—C91.52 (19)
C3—C4—C5—C6172.15 (12)C4—C5—C10—C9179.58 (11)
O2—C4—C5—C10174.84 (13)C6—C5—C10—C1177.06 (11)
C3—C4—C5—C106.75 (18)C4—C5—C10—C11.83 (18)
C11—O3—C6—C74.1 (2)O1—C1—C10—C96.9 (2)
C11—O3—C6—C5175.23 (12)C2—C1—C10—C9173.40 (11)
C10—C5—C6—O3177.66 (12)O1—C1—C10—C5174.48 (12)
C4—C5—C6—O31.24 (18)C2—C1—C10—C55.19 (18)
C10—C5—C6—C71.67 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl2i0.952.723.6593 (14)169
C8—H8A···O2i0.952.543.3337 (18)142
C11—H11C···O1ii0.982.623.4030 (19)137
C12—H12A···O1iii0.982.493.3723 (19)149
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H8Cl2O4
Mr287.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)9.9366 (2), 15.6564 (3), 14.8505 (3)
β (°) 103.782 (2)
V3)2243.79 (8)
Z8
Radiation typeCu Kα
µ (mm1)5.27
Crystal size (mm)0.81 × 0.30 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.154, 0.418
No. of measured, independent and
observed [I > 2σ(I)] reflections
8037, 2199, 2156
Rint0.024
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.09
No. of reflections2199
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl2i0.952.723.6593 (14)169.3
C8—H8A···O2i0.952.543.3337 (18)141.5
C11—H11C···O1ii0.982.623.4030 (19)137.2
C12—H12A···O1iii0.982.493.3723 (19)149.0
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. The authors wish to acknowledge Sema Öztürk Yildirim for assistance with the data collection and solution.

References

First citationCopeland, R. L., Das, J. R., Bakare, O., Enwerem, N. M., Berhe, S., Hillaire, K., White, D., Beyene, D., Kassim, O. O. & Kanaan, Y. M. (2007). Anticancer Res. 27, 1537–1546.  Web of Science PubMed CAS Google Scholar
First citationDriebergen, R. J., Holthuis, J. J. M., Hulshoff, A., Postma-Kelder, S. J., Verboom, W., Reinhoudt, D. N. & Lelieveld, P. (1986). Anticancer Res. 6, 605–620.  CAS PubMed Web of Science Google Scholar
First citationHuang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (1998). Bioorg. Med. Chem. 6, 2261–2269.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIkemoto, I., Yakushi, K., Naito, Y., Kuroda, H. & Sano, M. (1977). Acta Cryst. B33, 2076–2079.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. 5, o2111–o2120.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRubio, P., Florencio, F., García-Blanco, S. & Rodriguez, J. G. (1985). Acta Cryst. C41, 1797–1799.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationScheuermann, S., Sarkar, B., Bolte, M., Bats, J. W., Lerner, H.-W. & Wagner, M. (2009). Inorg. Chem. 48, 9385–9392.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds