metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Bi­pyridine-κ2N,N′)chlorido[N-(2-hy­droxy­ethyl)-N-iso­propyl­di­thio­carbamato-κ2S,S′]zinc(II)

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 June 2012; accepted 18 June 2012; online 23 June 2012)

The ZnII atom in the title compound, [Zn(C6H12NOS2)Cl(C10H8N2)], is coordinated by a chelating N-2-hy­droxy­ethyl-N-isopropyl­dithio­carbamate ligand, a 2,2′-bipyridine ligand and a Cl atom. The resulting ClN2S2 donor set defines a distorted square-pyramidal coordination geometry. Helical supra­molecular chains sustained by O—H⋯S hydrogen bonds and propagating along the b axis feature in the crystal packing. A three-dimensional architecture is stabilized by C—H⋯O, C—H⋯S and C—H⋯Cl inter­actions.

Related literature

For crystal engineering studies on zinc complexes with fuctionalized dithio­carbamate ligands, see: Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.]); Poplaukhin & Tiekink (2010[Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.]). For the distinction between square-pyramidal and trigonal-bipyramidal geometries, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H12NOS2)Cl(C10H8N2)]

  • Mr = 435.29

  • Monoclinic, P 21 /n

  • a = 14.5008 (10) Å

  • b = 8.6216 (4) Å

  • c = 15.9905 (9) Å

  • β = 114.423 (7)°

  • V = 1820.25 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 100 K

  • 0.35 × 0.20 × 0.12 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.882, Tmax = 1.000

  • 11927 measured reflections

  • 4061 independent reflections

  • 3603 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.071

  • S = 1.04

  • 4061 reflections

  • 222 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Zn—Cl1 2.2503 (5)
Zn—S1 2.4366 (6)
Zn—S2 2.5026 (6)
Zn—N2 2.1097 (18)
Zn—N3 2.1692 (18)
S1—C1 1.736 (2)
S2—C1 1.723 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯S1i 0.84 (2) 2.42 (2) 3.2528 (18) 167 (2)
C6—H6c⋯O1i 0.98 2.47 3.438 (3) 169
C13—H13⋯S2ii 0.95 2.81 3.625 (2) 144
C7—H7⋯Cl1iii 0.95 2.79 3.579 (3) 142
C8—H8⋯Cl1iv 0.95 2.76 3.606 (2) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Introducing hydroxylethyl functionality into dithiocarbamate ligands facilitates the formation of higher dimensionality in their crystal structures (Benson et al., 2007; Poplaukhin & Tiekink, 2010). As a continuation of these studies, herein, the title compound, Zn[S2CN(CH2CH2OH)iPr](2,2'-bipyridine)Cl, (I), is described.

The molecular structure of (I), Fig. 1, features a ZnII atom coordinated by a dithiocarbamate ligand, two N atoms of the 2,2'-bipyridine ligand and a chloride. The dithiocarbamate ligand coordinates essentially in a bidentate mode, an assignment supported by the near equivalence of the C—S bond distances, Table 1. The resulting ClN2S2 donor set defines a coordination geometry intermediate between square pyramidal and trigonal bipyramidal geometry. This is quantified by the value of τ = 0.23 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984).

The crystal packing of (I) features helical supramolecular chains along the b axis that are sustained by O—H···S interactions, Fig. 2 and Table 2. Additional stability to the chains are afforded by C—H···O and C—H···S interactions, Table 2. The chains are connected into a three-dimensional architecture by C—H···Cl interactions, Fig. 3 and Table 1.

Related literature top

For crystal engineering studies on zinc complexes with fuctionalized dithiocarbamate ligands, see: Benson et al. (2007); Poplaukhin & Tiekink (2010). For the distinction between square-pyramidal and trigonal-bipyramidal geometries, see: Addison et al. (1984).

Experimental top

This compound was prepared using the in situ method by the addition of carbon disulfide (0.01 mol) to an ethanolic solution of isopropylethanolamine (0.01 mol). The mixture was stirred for one hour at 277 K. Then, it was added drop-wise to a solution of zinc dichloride (0.005 mol) in ethanol (20 ml) followed by 2,2'-bipyridine (0.01 mol) in ethanol (20 ml). The mixture was stirred for another two hours at 277 K. The white precipitate was filtered, washed with cold ethanol and dried in a desiccator. Crystallization was from its ethanol:chloroform (1:2) solution held at room temperature. Yield: 65.5%. M.pt. 424–426 K. Elemental analysis. Found (calculated) for C16H20ClN3OS2Zn: C, 45.21 (44.70); H 3.59 (3.50); N 9.69 (9.70); S 15.12 (14.90)%. IR (KBr): ν(O—H) 3391 m; ν(CN) 1442 s; ν(CS) 944 s; ν(Zn—S) 368 m cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 to 1.5Uequiv(C). The oxygen-bound H-atom was refined with O—H = 0.84±0.01 Å and Uiso(H) = 1.5Uequiv(O).

Structure description top

Introducing hydroxylethyl functionality into dithiocarbamate ligands facilitates the formation of higher dimensionality in their crystal structures (Benson et al., 2007; Poplaukhin & Tiekink, 2010). As a continuation of these studies, herein, the title compound, Zn[S2CN(CH2CH2OH)iPr](2,2'-bipyridine)Cl, (I), is described.

The molecular structure of (I), Fig. 1, features a ZnII atom coordinated by a dithiocarbamate ligand, two N atoms of the 2,2'-bipyridine ligand and a chloride. The dithiocarbamate ligand coordinates essentially in a bidentate mode, an assignment supported by the near equivalence of the C—S bond distances, Table 1. The resulting ClN2S2 donor set defines a coordination geometry intermediate between square pyramidal and trigonal bipyramidal geometry. This is quantified by the value of τ = 0.23 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984).

The crystal packing of (I) features helical supramolecular chains along the b axis that are sustained by O—H···S interactions, Fig. 2 and Table 2. Additional stability to the chains are afforded by C—H···O and C—H···S interactions, Table 2. The chains are connected into a three-dimensional architecture by C—H···Cl interactions, Fig. 3 and Table 1.

For crystal engineering studies on zinc complexes with fuctionalized dithiocarbamate ligands, see: Benson et al. (2007); Poplaukhin & Tiekink (2010). For the distinction between square-pyramidal and trigonal-bipyramidal geometries, see: Addison et al. (1984).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain in (I) mediated by O—H···S hydrogen bonds (orange dashed lines) along the b axis.
[Figure 3] Fig. 3. A view of the crystal packing in projection down the b axis. The O—H···S, C—H···O, C—H···S and C—H···Cl interactions are shown as orange, pink, brown and blue dashed lines, respectively.
(Bipyridine-κ2N,N')chlorido[N-(2-hydroxyethyl)- N-isopropyldithiocarbamato-κ2S,S']zinc(II) top
Crystal data top
[Zn(C6H12NOS2)Cl(C10H8N2)]F(000) = 896
Mr = 435.29Dx = 1.588 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4897 reflections
a = 14.5008 (10) Åθ = 2.4–28.7°
b = 8.6216 (4) ŵ = 1.73 mm1
c = 15.9905 (9) ÅT = 100 K
β = 114.423 (7)°Block, colourless
V = 1820.25 (18) Å30.35 × 0.20 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
4061 independent reflections
Radiation source: fine-focus sealed tube3603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1718
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 119
Tmin = 0.882, Tmax = 1.000l = 2020
11927 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0245P)2 + 1.5375P]
where P = (Fo2 + 2Fc2)/3
4061 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.83 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
[Zn(C6H12NOS2)Cl(C10H8N2)]V = 1820.25 (18) Å3
Mr = 435.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.5008 (10) ŵ = 1.73 mm1
b = 8.6216 (4) ÅT = 100 K
c = 15.9905 (9) Å0.35 × 0.20 × 0.12 mm
β = 114.423 (7)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
4061 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3603 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 1.000Rint = 0.034
11927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.83 e Å3
4061 reflectionsΔρmin = 0.37 e Å3
222 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.330691 (19)0.17193 (3)0.503343 (15)0.01377 (8)
Cl10.35450 (4)0.06878 (6)0.38450 (3)0.01704 (12)
S10.17619 (4)0.07781 (6)0.51151 (3)0.01631 (12)
S20.38248 (4)0.02253 (6)0.63081 (3)0.01617 (12)
O10.29263 (14)0.1242 (2)0.85472 (11)0.0279 (4)
H1o0.294 (2)0.194 (2)0.8922 (15)0.030*
N10.21773 (14)0.1346 (2)0.64509 (12)0.0164 (4)
N20.44495 (14)0.3303 (2)0.58105 (11)0.0142 (4)
N30.26566 (14)0.3969 (2)0.45052 (11)0.0148 (4)
C10.25446 (16)0.0378 (2)0.60191 (13)0.0146 (4)
C20.28503 (17)0.2471 (3)0.71296 (14)0.0183 (5)
H2A0.33030.29450.68780.022*
H2B0.24290.33100.72110.022*
C30.34975 (19)0.1781 (3)0.80665 (15)0.0239 (5)
H3A0.39830.25780.84440.029*
H3B0.38940.09060.79840.029*
C40.10593 (17)0.1546 (3)0.61485 (15)0.0179 (5)
H40.07240.06130.57740.021*
C50.07640 (18)0.1600 (3)0.69567 (15)0.0225 (5)
H5A0.09740.25950.72760.034*
H5B0.00280.14890.67330.034*
H5C0.10990.07520.73820.034*
C60.06906 (18)0.2952 (3)0.55214 (15)0.0238 (5)
H6A0.08300.28010.49770.036*
H6B0.00400.30800.53320.036*
H6C0.10450.38820.58520.036*
C70.53526 (17)0.2870 (3)0.64499 (14)0.0181 (5)
H70.54870.17960.65690.022*
C80.61006 (17)0.3927 (3)0.69449 (15)0.0198 (5)
H80.67340.35850.73960.024*
C90.59019 (17)0.5490 (3)0.67659 (14)0.0198 (5)
H90.64010.62410.70920.024*
C100.49646 (17)0.5954 (3)0.61041 (14)0.0172 (5)
H100.48150.70240.59740.021*
C110.42524 (16)0.4830 (2)0.56367 (13)0.0138 (4)
C120.32424 (16)0.5203 (3)0.48989 (13)0.0141 (4)
C130.29299 (18)0.6707 (3)0.46101 (14)0.0188 (5)
H130.33550.75630.48970.023*
C140.19875 (19)0.6939 (3)0.38968 (14)0.0215 (5)
H140.17570.79600.36920.026*
C150.13850 (18)0.5670 (3)0.34845 (15)0.0224 (5)
H150.07400.58010.29890.027*
C160.17453 (17)0.4209 (3)0.38117 (14)0.0199 (5)
H160.13310.33360.35350.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01493 (14)0.01139 (14)0.01590 (12)0.00257 (10)0.00730 (10)0.00175 (9)
Cl10.0189 (3)0.0167 (3)0.0165 (2)0.0009 (2)0.0083 (2)0.00189 (19)
S10.0165 (3)0.0150 (3)0.0181 (2)0.0020 (2)0.0078 (2)0.0045 (2)
S20.0143 (3)0.0157 (3)0.0171 (2)0.0017 (2)0.0050 (2)0.0012 (2)
O10.0363 (11)0.0248 (10)0.0236 (8)0.0009 (8)0.0135 (8)0.0025 (7)
N10.0153 (9)0.0171 (10)0.0164 (8)0.0000 (8)0.0063 (7)0.0021 (7)
N20.0166 (9)0.0127 (9)0.0157 (8)0.0020 (7)0.0091 (7)0.0006 (7)
N30.0163 (9)0.0140 (9)0.0156 (8)0.0029 (8)0.0081 (7)0.0023 (7)
C10.0166 (11)0.0131 (11)0.0144 (9)0.0006 (9)0.0067 (8)0.0018 (8)
C20.0184 (11)0.0154 (12)0.0199 (10)0.0021 (10)0.0066 (9)0.0059 (9)
C30.0245 (13)0.0265 (13)0.0193 (11)0.0029 (11)0.0077 (9)0.0032 (9)
C40.0144 (11)0.0188 (12)0.0209 (10)0.0009 (9)0.0077 (9)0.0033 (9)
C50.0186 (12)0.0288 (14)0.0226 (11)0.0058 (10)0.0110 (9)0.0003 (10)
C60.0164 (12)0.0291 (14)0.0239 (11)0.0027 (11)0.0064 (9)0.0041 (10)
C70.0169 (11)0.0187 (12)0.0209 (10)0.0005 (10)0.0099 (9)0.0026 (9)
C80.0155 (11)0.0261 (13)0.0178 (10)0.0018 (10)0.0070 (8)0.0007 (9)
C90.0186 (12)0.0250 (13)0.0184 (10)0.0082 (10)0.0103 (9)0.0058 (9)
C100.0197 (12)0.0154 (11)0.0191 (10)0.0030 (9)0.0107 (9)0.0033 (8)
C110.0178 (11)0.0126 (11)0.0150 (9)0.0035 (9)0.0105 (8)0.0020 (8)
C120.0187 (11)0.0142 (11)0.0125 (9)0.0011 (9)0.0096 (8)0.0022 (8)
C130.0274 (13)0.0127 (11)0.0162 (10)0.0017 (10)0.0089 (9)0.0008 (8)
C140.0298 (14)0.0176 (12)0.0171 (10)0.0048 (10)0.0096 (9)0.0030 (9)
C150.0207 (12)0.0267 (13)0.0177 (10)0.0032 (10)0.0059 (9)0.0003 (9)
C160.0179 (12)0.0233 (13)0.0176 (10)0.0029 (10)0.0065 (9)0.0020 (9)
Geometric parameters (Å, º) top
Zn—Cl12.2503 (5)C5—H5A0.9800
Zn—S12.4366 (6)C5—H5B0.9800
Zn—S22.5026 (6)C5—H5C0.9800
Zn—N22.1097 (18)C6—H6A0.9800
Zn—N32.1692 (18)C6—H6B0.9800
S1—C11.736 (2)C6—H6C0.9800
S2—C11.723 (2)C7—C81.386 (3)
O1—C31.421 (3)C7—H70.9500
O1—H1o0.844 (10)C8—C91.383 (3)
N1—C11.327 (3)C8—H80.9500
N1—C21.482 (3)C9—C101.392 (3)
N1—C41.498 (3)C9—H90.9500
N2—C71.339 (3)C10—C111.388 (3)
N2—C111.351 (3)C10—H100.9500
N3—C161.344 (3)C11—C121.487 (3)
N3—C121.344 (3)C12—C131.388 (3)
C2—C31.522 (3)C13—C141.386 (3)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.386 (3)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C15—C161.381 (3)
C4—C51.521 (3)C15—H150.9500
C4—C61.523 (3)C16—H160.9500
C4—H41.0000
N2—Zn—N376.10 (7)C4—C5—H5A109.5
N2—Zn—Cl1113.32 (5)C4—C5—H5B109.5
N3—Zn—Cl1102.61 (5)H5A—C5—H5B109.5
N2—Zn—S1134.39 (5)C4—C5—H5C109.5
N3—Zn—S193.28 (5)H5A—C5—H5C109.5
Cl1—Zn—S1112.28 (2)H5B—C5—H5C109.5
N2—Zn—S293.20 (5)C4—C6—H6A109.5
N3—Zn—S2148.41 (5)C4—C6—H6B109.5
Cl1—Zn—S2108.90 (2)H6A—C6—H6B109.5
S1—Zn—S272.914 (19)C4—C6—H6C109.5
C1—S1—Zn86.37 (8)H6A—C6—H6C109.5
C1—S2—Zn84.58 (7)H6B—C6—H6C109.5
C3—O1—H1o107 (2)N2—C7—C8122.7 (2)
C1—N1—C2120.56 (19)N2—C7—H7118.6
C1—N1—C4121.19 (18)C8—C7—H7118.6
C2—N1—C4117.28 (17)C9—C8—C7118.4 (2)
C7—N2—C11119.03 (19)C9—C8—H8120.8
C7—N2—Zn123.48 (15)C7—C8—H8120.8
C11—N2—Zn117.49 (14)C8—C9—C10119.5 (2)
C16—N3—C12118.67 (19)C8—C9—H9120.3
C16—N3—Zn125.42 (15)C10—C9—H9120.3
C12—N3—Zn115.87 (14)C11—C10—C9118.9 (2)
N1—C1—S2121.89 (16)C11—C10—H10120.5
N1—C1—S1121.97 (17)C9—C10—H10120.5
S2—C1—S1116.13 (12)N2—C11—C10121.5 (2)
N1—C2—C3114.61 (19)N2—C11—C12115.40 (18)
N1—C2—H2A108.6C10—C11—C12123.1 (2)
C3—C2—H2A108.6N3—C12—C13121.8 (2)
N1—C2—H2B108.6N3—C12—C11115.14 (19)
C3—C2—H2B108.6C13—C12—C11123.0 (2)
H2A—C2—H2B107.6C14—C13—C12119.0 (2)
O1—C3—C2113.6 (2)C14—C13—H13120.5
O1—C3—H3A108.8C12—C13—H13120.5
C2—C3—H3A108.8C13—C14—C15119.4 (2)
O1—C3—H3B108.8C13—C14—H14120.3
C2—C3—H3B108.8C15—C14—H14120.3
H3A—C3—H3B107.7C16—C15—C14118.4 (2)
N1—C4—C5112.13 (17)C16—C15—H15120.8
N1—C4—C6110.02 (18)C14—C15—H15120.8
C5—C4—C6112.90 (19)N3—C16—C15122.8 (2)
N1—C4—H4107.2N3—C16—H16118.6
C5—C4—H4107.2C15—C16—H16118.6
C6—C4—H4107.2
N2—Zn—S1—C177.16 (10)C4—N1—C2—C3113.0 (2)
N3—Zn—S1—C1150.87 (8)N1—C2—C3—O166.0 (3)
Cl1—Zn—S1—C1104.07 (7)C1—N1—C4—C5137.2 (2)
S2—Zn—S1—C10.17 (7)C2—N1—C4—C554.0 (3)
N2—Zn—S2—C1135.54 (9)C1—N1—C4—C696.3 (2)
N3—Zn—S2—C167.16 (12)C2—N1—C4—C672.5 (2)
Cl1—Zn—S2—C1108.48 (7)C11—N2—C7—C80.0 (3)
S1—Zn—S2—C10.17 (7)Zn—N2—C7—C8179.02 (16)
N3—Zn—N2—C7178.42 (18)N2—C7—C8—C90.2 (3)
Cl1—Zn—N2—C780.48 (17)C7—C8—C9—C100.3 (3)
S1—Zn—N2—C7100.76 (17)C8—C9—C10—C110.2 (3)
S2—Zn—N2—C731.69 (16)C7—N2—C11—C100.1 (3)
N3—Zn—N2—C110.66 (14)Zn—N2—C11—C10179.00 (15)
Cl1—Zn—N2—C1198.60 (15)C7—N2—C11—C12178.38 (18)
S1—Zn—N2—C1180.16 (16)Zn—N2—C11—C120.7 (2)
S2—Zn—N2—C11149.23 (14)C9—C10—C11—N20.0 (3)
N2—Zn—N3—C16177.47 (18)C9—C10—C11—C12178.10 (19)
Cl1—Zn—N3—C1666.22 (17)C16—N3—C12—C130.2 (3)
S1—Zn—N3—C1647.48 (17)Zn—N3—C12—C13178.27 (16)
S2—Zn—N3—C16109.55 (17)C16—N3—C12—C11177.85 (18)
N2—Zn—N3—C120.47 (14)Zn—N3—C12—C110.2 (2)
Cl1—Zn—N3—C12111.72 (14)N2—C11—C12—N30.3 (3)
S1—Zn—N3—C12134.57 (14)C10—C11—C12—N3178.54 (19)
S2—Zn—N3—C1272.51 (18)N2—C11—C12—C13177.68 (19)
C2—N1—C1—S27.2 (3)C10—C11—C12—C130.5 (3)
C4—N1—C1—S2175.69 (15)N3—C12—C13—C140.1 (3)
C2—N1—C1—S1171.42 (15)C11—C12—C13—C14177.9 (2)
C4—N1—C1—S12.9 (3)C12—C13—C14—C150.6 (3)
Zn—S2—C1—N1178.96 (18)C13—C14—C15—C160.8 (3)
Zn—S2—C1—S10.26 (11)C12—N3—C16—C150.1 (3)
Zn—S1—C1—N1178.97 (18)Zn—N3—C16—C15177.77 (17)
Zn—S1—C1—S20.26 (11)C14—C15—C16—N30.6 (3)
C1—N1—C2—C378.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···S1i0.84 (2)2.42 (2)3.2528 (18)167 (2)
C6—H6c···O1i0.982.473.438 (3)169
C13—H13···S2ii0.952.813.625 (2)144
C7—H7···Cl1iii0.952.793.579 (3)142
C8—H8···Cl1iv0.952.763.606 (2)148
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H12NOS2)Cl(C10H8N2)]
Mr435.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.5008 (10), 8.6216 (4), 15.9905 (9)
β (°) 114.423 (7)
V3)1820.25 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.35 × 0.20 × 0.12
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.882, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11927, 4061, 3603
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.04
No. of reflections4061
No. of parameters222
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.37

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn—Cl12.2503 (5)Zn—N32.1692 (18)
Zn—S12.4366 (6)S1—C11.736 (2)
Zn—S22.5026 (6)S2—C11.723 (2)
Zn—N22.1097 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···S1i0.84 (2)2.424 (19)3.2528 (18)167 (2)
C6—H6c···O1i0.982.473.438 (3)169
C13—H13···S2ii0.952.813.625 (2)144
C7—H7···Cl1iii0.952.793.579 (3)142
C8—H8···Cl1iv0.952.763.606 (2)148
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aibi@ukm.my.

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08–27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092–2010) and Universiti Putra Malaysia for supporting this study. Structural studies are supported by the Ministry of Higher Education through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–941.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302–1306.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds