organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,2′E)-Di­methyl 2,2′-[(phenyl­aza­nedi­yl)bis­­(methyl­ene)]bis­­(3-phenyl­acrylate)

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India, and cDepartment of Organic Chemistry, University of mMdras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 19 June 2012; accepted 26 June 2012; online 30 June 2012)

The C=C double bonds in the title compound, C28H27NO4, adopt an E conformation. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

Related literature

For applications of acrylate derivatives, see: De Fraine & Martin (1991[De Fraine, P. J. & Martin, A. (1991). US Patent No. 5055471.]). For resonance effects of the acrylate moiety, see: Merlino (1971[Merlino, S. (1971). Acta Cryst. B27, 2491-2492.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544-1546.]).

[Scheme 1]

Experimental

Crystal data
  • C28H27NO4

  • Mr = 441.51

  • Triclinic, [P \overline 1]

  • a = 9.9099 (2) Å

  • b = 11.7327 (2) Å

  • c = 12.4079 (4) Å

  • α = 101.131 (2)°

  • β = 106.039 (2)°

  • γ = 114.817 (1)°

  • V = 1176.86 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.32 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.992

  • 15565 measured reflections

  • 5710 independent reflections

  • 3683 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 1.03

  • 5710 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.97 2.52 3.474 (2) 167
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acrylate and their derivatives are important compounds because of their agrochemical and medical applications (De Fraine & Martin, 1991). In view of this medicinal importance, the crystal structure determination of the title compound was carried out and the results are presented here.

Fig. 1.shows a displacement ellipsoid plot of the title compound with the atom numbering scheme. The molecule adopts an E configuration about the C7=C8 and C17=C18 double bonds. The dihedral angle between the two aromatic rings (C1—C6) and (C10—C15) is 70.40 (4)°, (C1—C6) and (C19—C24) is 61.55 (6) °. The significant difference in length of the C27—O4 = 1.325 (2) Å and C28—O4 = 1.437 (2) Å bonds is attributed to a partial contribution from the O-—C = O+—C resonance structure of the O3=C27—O4—C28 group and C25—O2= 1.337 (2) Å and C26—O2= 1.439 (2) Å bonds is attributed to a partial contribution from the O-—C = O+—C resonance structure of the O1=C25—O4—C26 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986).

The crystal packing is stabilized by intermolecular nonclassical C—H···O hydrogen bonds linking the molecules into centrosymmetric dimers. A packing view of the title compound is shown in Fig. 2.

Related literature top

For applications of acrylate derivatives, see: De Fraine & Martin (1991). For resonance effects of the acrylate moiety, see: Merlino (1971); Varghese et al. (1986).

Experimental top

A mixture of (Z)-methyl 2-(bromomethyl)-3-phenylacrylate (2 mmol) and aniline (1 mmol) in the presence of potassium carbonate (4 mmol) in dry acetonitrile (10 ml) was stirred at room temperature for 3 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20 ml). The organic layer was washed with brine (2 x 20 ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which successfully provide the crude final product ((2E,2'E)-dimethyl 2,2'-(phenylazanediyl)bis(methylene)bis(3-phenylacrylate)). The final product was purified by column chromatography on silica gel to afford the title compound in 35% yields.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.97 Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Structure description top

Acrylate and their derivatives are important compounds because of their agrochemical and medical applications (De Fraine & Martin, 1991). In view of this medicinal importance, the crystal structure determination of the title compound was carried out and the results are presented here.

Fig. 1.shows a displacement ellipsoid plot of the title compound with the atom numbering scheme. The molecule adopts an E configuration about the C7=C8 and C17=C18 double bonds. The dihedral angle between the two aromatic rings (C1—C6) and (C10—C15) is 70.40 (4)°, (C1—C6) and (C19—C24) is 61.55 (6) °. The significant difference in length of the C27—O4 = 1.325 (2) Å and C28—O4 = 1.437 (2) Å bonds is attributed to a partial contribution from the O-—C = O+—C resonance structure of the O3=C27—O4—C28 group and C25—O2= 1.337 (2) Å and C26—O2= 1.439 (2) Å bonds is attributed to a partial contribution from the O-—C = O+—C resonance structure of the O1=C25—O4—C26 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986).

The crystal packing is stabilized by intermolecular nonclassical C—H···O hydrogen bonds linking the molecules into centrosymmetric dimers. A packing view of the title compound is shown in Fig. 2.

For applications of acrylate derivatives, see: De Fraine & Martin (1991). For resonance effects of the acrylate moiety, see: Merlino (1971); Varghese et al. (1986).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(2E,2'E)-Dimethyl 2,2'-[(phenylazanediyl)bis(methylene)]bis(3-phenylacrylate) top
Crystal data top
C28H27NO4Z = 2
Mr = 441.51F(000) = 468
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9099 (2) ÅCell parameters from 5710 reflections
b = 11.7327 (2) Åθ = 1.8–28.5°
c = 12.4079 (4) ŵ = 0.08 mm1
α = 101.131 (2)°T = 298 K
β = 106.039 (2)°Triclinic, colourless
γ = 114.817 (1)°0.32 × 0.20 × 0.10 mm
V = 1176.86 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5710 independent reflections
Radiation source: fine-focus sealed tube3683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1213
Tmin = 0.972, Tmax = 0.992k = 1515
15565 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.1829P]
where P = (Fo2 + 2Fc2)/3
5710 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C28H27NO4γ = 114.817 (1)°
Mr = 441.51V = 1176.86 (5) Å3
Triclinic, P1Z = 2
a = 9.9099 (2) ÅMo Kα radiation
b = 11.7327 (2) ŵ = 0.08 mm1
c = 12.4079 (4) ÅT = 298 K
α = 101.131 (2)°0.32 × 0.20 × 0.10 mm
β = 106.039 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5710 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3683 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.992Rint = 0.024
15565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
5710 reflectionsΔρmin = 0.19 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41831 (18)0.27590 (16)0.18680 (14)0.0505 (4)
H10.39860.20810.17310.061*
C20.3444 (2)0.34918 (18)0.24884 (16)0.0624 (5)
H20.27630.32970.27750.075*
C30.3709 (2)0.4505 (2)0.26837 (17)0.0694 (5)
H30.32190.49870.31110.083*
C40.4697 (2)0.48088 (19)0.22485 (17)0.0664 (5)
H40.48660.55030.23730.080*
C50.54353 (19)0.40857 (16)0.16293 (15)0.0525 (4)
H50.60890.43070.13270.063*
C60.52232 (17)0.30277 (14)0.14460 (13)0.0418 (3)
C70.60328 (17)0.23200 (14)0.07556 (12)0.0427 (3)
H70.61770.28400.01800.051*
C80.65925 (17)0.10413 (14)0.08314 (12)0.0402 (3)
C90.65417 (17)0.00032 (14)0.17295 (13)0.0427 (3)
H9A0.55910.00620.13430.051*
H9B0.64120.03040.23850.051*
C100.93968 (17)0.16227 (14)0.30881 (12)0.0365 (3)
C110.9588 (2)0.06137 (16)0.34304 (13)0.0476 (4)
H110.87300.02670.30750.057*
C121.1034 (2)0.09086 (19)0.42885 (14)0.0598 (5)
H121.11320.02220.45040.072*
C131.2329 (2)0.21927 (19)0.48300 (15)0.0627 (5)
H131.32970.23820.54090.075*
C141.2162 (2)0.31928 (17)0.44981 (15)0.0557 (4)
H141.30350.40670.48550.067*
C151.07327 (17)0.29301 (14)0.36500 (13)0.0435 (3)
H151.06520.36290.34470.052*
C160.77545 (19)0.24172 (14)0.19443 (13)0.0424 (3)
H16A0.67280.20210.12640.051*
H16B0.86080.29080.16990.051*
C170.77845 (18)0.34132 (15)0.29512 (13)0.0426 (3)
C180.83568 (18)0.47221 (15)0.31417 (13)0.0460 (4)
H180.83670.51990.38390.055*
C190.89688 (18)0.55354 (15)0.24480 (13)0.0440 (3)
C200.8597 (2)0.50340 (16)0.12296 (14)0.0512 (4)
H200.79630.41120.08150.061*
C210.9149 (2)0.58743 (18)0.06251 (16)0.0619 (5)
H210.88820.55170.01910.074*
C221.0091 (3)0.72337 (19)0.12183 (18)0.0707 (5)
H221.04810.77990.08120.085*
C231.0455 (3)0.77566 (18)0.24174 (19)0.0718 (5)
H231.10890.86800.28220.086*
C240.9889 (2)0.69226 (16)0.30240 (16)0.0582 (4)
H241.01240.72920.38320.070*
C250.72072 (18)0.06039 (16)0.00643 (14)0.0468 (4)
C260.8187 (3)0.1112 (2)0.15181 (19)0.0900 (7)
H26A0.73030.11870.21520.135*
H26B0.84860.17460.18210.135*
H26C0.90990.02190.12170.135*
C270.7138 (2)0.29464 (17)0.38288 (15)0.0530 (4)
C280.5352 (3)0.1088 (2)0.4154 (2)0.0999 (8)
H28A0.62220.12200.48390.150*
H28B0.46010.01440.37390.150*
H28C0.48010.15180.44140.150*
N10.79578 (14)0.13407 (11)0.22255 (10)0.0407 (3)
O10.72348 (16)0.03324 (13)0.03387 (11)0.0649 (3)
O20.76968 (17)0.13876 (12)0.05645 (11)0.0697 (4)
O30.7549 (2)0.36236 (14)0.48407 (12)0.0899 (5)
O40.59991 (17)0.16605 (12)0.33627 (12)0.0769 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (8)0.0400 (9)0.0580 (10)0.0154 (7)0.0226 (8)0.0087 (7)
C20.0484 (10)0.0593 (12)0.0636 (11)0.0140 (9)0.0287 (9)0.0121 (9)
C30.0591 (11)0.0653 (13)0.0618 (11)0.0110 (10)0.0231 (10)0.0281 (10)
C40.0644 (11)0.0522 (11)0.0699 (12)0.0216 (10)0.0174 (10)0.0285 (10)
C50.0503 (9)0.0434 (9)0.0567 (10)0.0222 (8)0.0173 (8)0.0130 (8)
C60.0388 (7)0.0313 (8)0.0409 (8)0.0108 (6)0.0131 (6)0.0043 (6)
C70.0441 (8)0.0353 (8)0.0431 (8)0.0181 (7)0.0189 (7)0.0046 (6)
C80.0384 (7)0.0345 (8)0.0407 (8)0.0155 (7)0.0157 (6)0.0059 (6)
C90.0419 (8)0.0320 (8)0.0491 (8)0.0155 (7)0.0210 (7)0.0076 (6)
C100.0439 (8)0.0350 (8)0.0350 (7)0.0203 (7)0.0225 (6)0.0104 (6)
C110.0599 (10)0.0387 (9)0.0416 (8)0.0237 (8)0.0199 (8)0.0123 (7)
C120.0810 (13)0.0633 (12)0.0442 (9)0.0476 (11)0.0199 (9)0.0178 (9)
C130.0589 (11)0.0724 (13)0.0460 (9)0.0387 (11)0.0090 (8)0.0040 (9)
C140.0464 (9)0.0506 (10)0.0548 (10)0.0209 (8)0.0175 (8)0.0002 (8)
C150.0447 (8)0.0366 (8)0.0483 (8)0.0190 (7)0.0235 (7)0.0097 (7)
C160.0516 (9)0.0354 (8)0.0420 (8)0.0242 (7)0.0194 (7)0.0110 (6)
C170.0477 (8)0.0388 (8)0.0447 (8)0.0252 (7)0.0198 (7)0.0110 (7)
C180.0547 (9)0.0427 (9)0.0458 (8)0.0298 (8)0.0226 (7)0.0099 (7)
C190.0500 (8)0.0371 (8)0.0503 (9)0.0279 (7)0.0197 (7)0.0124 (7)
C200.0635 (10)0.0406 (9)0.0483 (9)0.0297 (8)0.0166 (8)0.0136 (7)
C210.0878 (13)0.0560 (11)0.0545 (10)0.0443 (11)0.0290 (10)0.0243 (9)
C220.0986 (15)0.0569 (12)0.0821 (14)0.0463 (12)0.0493 (12)0.0386 (11)
C230.0914 (14)0.0364 (10)0.0839 (14)0.0281 (10)0.0388 (12)0.0177 (10)
C240.0734 (12)0.0406 (9)0.0602 (10)0.0299 (9)0.0293 (9)0.0104 (8)
C250.0473 (9)0.0390 (9)0.0464 (8)0.0175 (7)0.0198 (7)0.0081 (7)
C260.1282 (19)0.0856 (16)0.0804 (14)0.0509 (15)0.0781 (15)0.0305 (12)
C270.0664 (11)0.0444 (10)0.0567 (10)0.0303 (9)0.0339 (9)0.0156 (8)
C280.1206 (19)0.0731 (15)0.1195 (19)0.0308 (14)0.0928 (17)0.0376 (14)
N10.0428 (7)0.0290 (6)0.0458 (7)0.0167 (6)0.0161 (6)0.0100 (5)
O10.0853 (9)0.0595 (8)0.0673 (8)0.0399 (7)0.0417 (7)0.0318 (7)
O20.1020 (10)0.0596 (8)0.0761 (8)0.0452 (8)0.0650 (8)0.0272 (7)
O30.1303 (13)0.0634 (9)0.0627 (8)0.0304 (9)0.0559 (9)0.0136 (7)
O40.0862 (9)0.0504 (8)0.0820 (9)0.0144 (7)0.0586 (8)0.0099 (7)
Geometric parameters (Å, º) top
C1—C21.381 (2)C16—N11.4499 (17)
C1—C61.394 (2)C16—C171.5211 (19)
C1—H10.9300C16—H16A0.9700
C2—C31.370 (3)C16—H16B0.9700
C2—H20.9300C17—C181.338 (2)
C3—C41.375 (3)C17—C271.489 (2)
C3—H30.9300C18—C191.462 (2)
C4—C51.373 (2)C18—H180.9300
C4—H40.9300C19—C201.391 (2)
C5—C61.392 (2)C19—C241.391 (2)
C5—H50.9300C20—C211.376 (2)
C6—C71.4704 (19)C20—H200.9300
C7—C81.3362 (19)C21—C221.369 (3)
C7—H70.9300C21—H210.9300
C8—C251.484 (2)C22—C231.373 (3)
C8—C91.5172 (19)C22—H220.9300
C9—N11.4533 (18)C23—C241.377 (2)
C9—H9A0.9700C23—H230.9300
C9—H9B0.9700C24—H240.9300
C10—N11.3830 (18)C25—O11.2032 (18)
C10—C111.3985 (19)C25—O21.3367 (18)
C10—C151.401 (2)C26—O21.440 (2)
C11—C121.380 (2)C26—H26A0.9600
C11—H110.9300C26—H26B0.9600
C12—C131.370 (3)C26—H26C0.9600
C12—H120.9300C27—O31.1976 (19)
C13—C141.373 (2)C27—O41.326 (2)
C13—H130.9300C28—O41.438 (2)
C14—C151.376 (2)C28—H28A0.9600
C14—H140.9300C28—H28B0.9600
C15—H150.9300C28—H28C0.9600
C2—C1—C6120.52 (15)N1—C16—H16B108.3
C2—C1—H1119.7C17—C16—H16B108.3
C6—C1—H1119.7H16A—C16—H16B107.4
C3—C2—C1120.32 (16)C18—C17—C27114.62 (13)
C3—C2—H2119.8C18—C17—C16125.71 (13)
C1—C2—H2119.8C27—C17—C16119.67 (13)
C2—C3—C4120.09 (16)C17—C18—C19131.42 (13)
C2—C3—H3120.0C17—C18—H18114.3
C4—C3—H3120.0C19—C18—H18114.3
C5—C4—C3119.93 (17)C20—C19—C24117.28 (15)
C5—C4—H4120.0C20—C19—C18124.78 (14)
C3—C4—H4120.0C24—C19—C18117.74 (14)
C4—C5—C6121.21 (16)C21—C20—C19121.32 (15)
C4—C5—H5119.4C21—C20—H20119.3
C6—C5—H5119.4C19—C20—H20119.3
C5—C6—C1117.88 (14)C22—C21—C20120.34 (16)
C5—C6—C7117.79 (13)C22—C21—H21119.8
C1—C6—C7124.22 (13)C20—C21—H21119.8
C8—C7—C6129.70 (12)C21—C22—C23119.52 (17)
C8—C7—H7115.1C21—C22—H22120.2
C6—C7—H7115.1C23—C22—H22120.2
C7—C8—C25119.20 (12)C22—C23—C24120.42 (17)
C7—C8—C9124.47 (12)C22—C23—H23119.8
C25—C8—C9116.18 (12)C24—C23—H23119.8
N1—C9—C8115.32 (11)C23—C24—C19121.07 (16)
N1—C9—H9A108.4C23—C24—H24119.5
C8—C9—H9A108.4C19—C24—H24119.5
N1—C9—H9B108.4O1—C25—O2123.05 (14)
C8—C9—H9B108.4O1—C25—C8124.34 (13)
H9A—C9—H9B107.5O2—C25—C8112.58 (13)
N1—C10—C11121.47 (13)O2—C26—H26A109.5
N1—C10—C15121.47 (12)O2—C26—H26B109.5
C11—C10—C15117.06 (13)H26A—C26—H26B109.5
C12—C11—C10120.84 (15)O2—C26—H26C109.5
C12—C11—H11119.6H26A—C26—H26C109.5
C10—C11—H11119.6H26B—C26—H26C109.5
C13—C12—C11121.37 (16)O3—C27—O4121.91 (15)
C13—C12—H12119.3O3—C27—C17125.83 (16)
C11—C12—H12119.3O4—C27—C17112.25 (13)
C12—C13—C14118.45 (16)O4—C28—H28A109.5
C12—C13—H13120.8O4—C28—H28B109.5
C14—C13—H13120.8H28A—C28—H28B109.5
C13—C14—C15121.48 (16)O4—C28—H28C109.5
C13—C14—H14119.3H28A—C28—H28C109.5
C15—C14—H14119.3H28B—C28—H28C109.5
C14—C15—C10120.80 (14)C10—N1—C16120.33 (11)
C14—C15—H15119.6C10—N1—C9120.62 (11)
C10—C15—H15119.6C16—N1—C9118.29 (11)
N1—C16—C17115.91 (11)C25—O2—C26116.69 (14)
N1—C16—H16A108.3C27—O4—C28116.80 (15)
C17—C16—H16A108.3
C6—C1—C2—C30.8 (3)C24—C19—C20—C211.5 (2)
C1—C2—C3—C40.8 (3)C18—C19—C20—C21176.33 (15)
C2—C3—C4—C50.8 (3)C19—C20—C21—C220.3 (3)
C3—C4—C5—C61.0 (3)C20—C21—C22—C231.3 (3)
C4—C5—C6—C12.6 (2)C21—C22—C23—C240.4 (3)
C4—C5—C6—C7178.95 (15)C22—C23—C24—C191.5 (3)
C2—C1—C6—C52.5 (2)C20—C19—C24—C232.3 (2)
C2—C1—C6—C7178.59 (15)C18—C19—C24—C23177.57 (16)
C5—C6—C7—C8150.06 (16)C7—C8—C25—O1154.50 (16)
C1—C6—C7—C833.8 (2)C9—C8—C25—O121.3 (2)
C6—C7—C8—C25173.35 (14)C7—C8—C25—O223.9 (2)
C6—C7—C8—C92.1 (2)C9—C8—C25—O2160.27 (13)
C7—C8—C9—N1141.60 (14)C18—C17—C27—O326.7 (2)
C25—C8—C9—N142.83 (18)C16—C17—C27—O3153.25 (18)
N1—C10—C11—C12179.68 (13)C18—C17—C27—O4152.40 (14)
C15—C10—C11—C120.3 (2)C16—C17—C27—O427.7 (2)
C10—C11—C12—C130.2 (2)C11—C10—N1—C16175.89 (12)
C11—C12—C13—C140.2 (2)C15—C10—N1—C164.70 (18)
C12—C13—C14—C150.5 (2)C11—C10—N1—C96.04 (18)
C13—C14—C15—C100.5 (2)C15—C10—N1—C9174.56 (12)
N1—C10—C15—C14179.34 (12)C17—C16—N1—C1064.45 (17)
C11—C10—C15—C140.09 (19)C17—C16—N1—C9105.64 (15)
N1—C16—C17—C18147.18 (15)C8—C9—N1—C1075.60 (16)
N1—C16—C17—C2732.7 (2)C8—C9—N1—C16114.34 (14)
C27—C17—C18—C19174.80 (15)O1—C25—O2—C263.5 (3)
C16—C17—C18—C195.3 (3)C8—C25—O2—C26174.95 (16)
C17—C18—C19—C2022.5 (3)O3—C27—O4—C284.1 (3)
C17—C18—C19—C24162.63 (16)C17—C27—O4—C28176.82 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.972.523.474 (2)167
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC28H27NO4
Mr441.51
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.9099 (2), 11.7327 (2), 12.4079 (4)
α, β, γ (°)101.131 (2), 106.039 (2), 114.817 (1)
V3)1176.86 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.972, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
15565, 5710, 3683
Rint0.024
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.03
No. of reflections5710
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.97002.52003.474 (2)167.00
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationDe Fraine, P. J. & Martin, A. (1991). US Patent No. 5055471.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMerlino, S. (1971). Acta Cryst. B27, 2491–2492.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds