organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Di­ethyl­carbamoyl-2′,4′-di­fluoro­bi­phenyl-4-yl 2,6-di­chloro-5-fluoro­pyridine-3-carboxyl­ate

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
*Correspondence e-mail: xcn77@yahoo.com.cn

(Received 26 May 2012; accepted 4 June 2012; online 13 June 2012)

In the title compound, C23H17Cl2F3N2O3, the mol­ecular conformation is significantly strained: atoms O, C(=O) and C attached to the central benzene ring deviate from its plane by 0.118 (2), 0.139 (2) and 0.174 (2) Å, respectively. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into chains along [110]. The crystal packing exhibits short inter­molecular Cl⋯F [2.9840 (16) Å] and Cl⋯Cl [3.2957 (12) Å] contacts.

Related literature

For details of the synthesis, see: Zhong et al. (2009[Zhong, G. X., Chen, L. L., Li, H. B., Liu, F. J., Hu, J. Q. & Hu, W. X. (2009). Bioorg. Med. Chem. Lett. 19, 4399-4402.], 2010[Zhong, G. X., Hu, H. D., Xia, C. N., Jiang, J. S. & Chen, T. T. (2010). J. Chem. Crystallogr. 40, 735-739.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17Cl2F3N2O3

  • Mr = 497.29

  • Triclinic, [P \overline 1]

  • a = 10.635 (3) Å

  • b = 10.888 (3) Å

  • c = 11.310 (3) Å

  • α = 96.838 (1)°

  • β = 109.213 (1)°

  • γ = 116.017 (3)°

  • V = 1056.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 153 K

  • 0.47 × 0.45 × 0.41 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.848, Tmax = 0.866

  • 10358 measured reflections

  • 4752 independent reflections

  • 3984 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.00

  • 4752 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.95 2.35 3.287 (2) 170
Symmetry code: (i) x-1, y-1, z.

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Fluorine-containing drugs, such as tegadifur, flutamide, ciprofloxacin - non-steroid anti-inflammatory drugs, have been studied due to their special properties (Zhong et al., 2009, 2010). As a continuation of their study, we present here the title compound (I) (Fig. 1).

The molecular conformation of (I) is significantly strained - atoms O1, C19 and C6 attached to the central benzene ring C7—C12 deviate from its plane at 0.118 (2), 0.139 (2) and 0.174 (2) Å, respectively. The atoms of C1–C6, F1 and F2 are almost coplanar, deviating from the mean plane within 0.0249 (12) A °. The atoms C13–C18, N1, F3 and Cl1 are coplanar, deviating from the mean plane within 0.0442 (10) A °, and the deviation of Cl1, O2 from the plane is 0.1047 (15) A °, 0.5851 (17) A °, respectively. The diethylamine group shows a normal twist conformation. The mean planes of C1—C6/F1/F2 and C13—C18/N1/F3/Cl1 form the dihedral angles of 34.62 (5) and 87.45 (4)°, respectively, with the central benzene ring. The adjacent substituent (C10 and C11 of the parent ring) remove away or reverse each other, which owes to the Cl and F atoms showing greater repulsive force. This phenomenon is samilar to that observed in 20,40-difluoro-4-[(4-chlorobenzoyl)oxy]-N-[4-nitro-3- (trifluoromethyl)phenyl]-[1,10-biphenyl]-3-carboxamide (Zhong et al., 2010).

In the crystal, weak C—H···O interactions (Table 1) link the molecules related by translation in [110] into chains. The crystal packing exhibits short intermolecular Cl···F [2.9840 (16) Å] and Cl···Cl [3.2957 (12) Å] contacts.

Related literature top

For details of the synthesis, see: Zhong et al. (2009, 2010).

Experimental top

The title compound was synthesized according to the known methods (Zhong et al., 2009, 2010). M.p. 125-127°C. 1HNMR (500 MHz, CDCl3, δ ppm): 1.13 (t, 3H, J =7.0 Hz, -CH3), 1.15 (t, 3H, J =7.0 Hz, -CH3), 3.31 (q, 2H, J=7.0 Hz, -CH2), 3.50 (q, 2H, J=7.0 Hz, -CH2), 6.95 (t, 1H, J=8.5 Hz), 7.00 (t, 1H, J=8.5 Hz), 7.41(d, 1H, J=8.5 Hz), 7.42 (q, 1H, J=8.5 Hz), 7.50 (s, 1H), 7.60 (d, 1H, J=8.5 Hz), 8.24 (d, 1H, J=7.0 Hz). MS: m/z 496 (M+, 11.85), 425 (6.50), 233 (22.78),232 (7.63), 195 (6.76), 191 (62.99), 164 (4.63), 72 (23.72). The solid product was dissolved in butanone-ethanol (4:1 v/v) and the solution evaporated gradually at room temperature to afford colorless single crystals of (I).

Refinement top

Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and torsion angles were refined to fit the electron density [Uiso(H) = 1.5Ueq(C)]. Other H atoms were placed in calculated positions, with C—H = 0.93 Å, and refined in riding mode, with Uiso(H) = 1.2Ueq(C).

Structure description top

Fluorine-containing drugs, such as tegadifur, flutamide, ciprofloxacin - non-steroid anti-inflammatory drugs, have been studied due to their special properties (Zhong et al., 2009, 2010). As a continuation of their study, we present here the title compound (I) (Fig. 1).

The molecular conformation of (I) is significantly strained - atoms O1, C19 and C6 attached to the central benzene ring C7—C12 deviate from its plane at 0.118 (2), 0.139 (2) and 0.174 (2) Å, respectively. The atoms of C1–C6, F1 and F2 are almost coplanar, deviating from the mean plane within 0.0249 (12) A °. The atoms C13–C18, N1, F3 and Cl1 are coplanar, deviating from the mean plane within 0.0442 (10) A °, and the deviation of Cl1, O2 from the plane is 0.1047 (15) A °, 0.5851 (17) A °, respectively. The diethylamine group shows a normal twist conformation. The mean planes of C1—C6/F1/F2 and C13—C18/N1/F3/Cl1 form the dihedral angles of 34.62 (5) and 87.45 (4)°, respectively, with the central benzene ring. The adjacent substituent (C10 and C11 of the parent ring) remove away or reverse each other, which owes to the Cl and F atoms showing greater repulsive force. This phenomenon is samilar to that observed in 20,40-difluoro-4-[(4-chlorobenzoyl)oxy]-N-[4-nitro-3- (trifluoromethyl)phenyl]-[1,10-biphenyl]-3-carboxamide (Zhong et al., 2010).

In the crystal, weak C—H···O interactions (Table 1) link the molecules related by translation in [110] into chains. The crystal packing exhibits short intermolecular Cl···F [2.9840 (16) Å] and Cl···Cl [3.2957 (12) Å] contacts.

For details of the synthesis, see: Zhong et al. (2009, 2010).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.
3-Diethylcarbamoyl-2',4'-difluorobiphenyl-4-yl 2,6-dichloro-5-fluoropyridine-3-carboxylate top
Crystal data top
C23H17Cl2F3N2O3Z = 2
Mr = 497.29F(000) = 508
Triclinic, P1Dx = 1.563 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.635 (3) ÅCell parameters from 3183 reflections
b = 10.888 (3) Åθ = 3.2–27.5°
c = 11.310 (3) ŵ = 0.36 mm1
α = 96.838 (1)°T = 153 K
β = 109.213 (1)°Block, colourless
γ = 116.017 (3)°0.47 × 0.45 × 0.41 mm
V = 1056.5 (5) Å3
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
4752 independent reflections
Radiation source: Rotating Anode3984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
phi and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 149
Tmin = 0.848, Tmax = 0.866l = 1414
10358 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.563P]
where P = (Fo2 + 2Fc2)/3
4752 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H17Cl2F3N2O3γ = 116.017 (3)°
Mr = 497.29V = 1056.5 (5) Å3
Triclinic, P1Z = 2
a = 10.635 (3) ÅMo Kα radiation
b = 10.888 (3) ŵ = 0.36 mm1
c = 11.310 (3) ÅT = 153 K
α = 96.838 (1)°0.47 × 0.45 × 0.41 mm
β = 109.213 (1)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
4752 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3984 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.866Rint = 0.021
10358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
4752 reflectionsΔρmin = 0.26 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.02347 (5)0.66238 (5)0.52667 (4)0.03025 (12)
Cl21.55188 (5)1.10870 (5)0.83855 (4)0.03247 (12)
F10.21518 (11)0.21751 (10)0.77572 (10)0.0272 (2)
F20.13376 (10)0.31772 (11)0.86694 (10)0.0277 (2)
F31.40442 (12)1.12878 (12)1.01131 (10)0.0387 (3)
O10.86955 (11)0.70469 (12)0.83236 (10)0.0182 (2)
O20.79299 (12)0.66272 (12)0.61291 (10)0.0207 (2)
O30.80388 (12)0.93820 (11)0.80944 (11)0.0211 (2)
N11.27582 (15)0.88489 (14)0.69998 (13)0.0203 (3)
N20.61806 (14)0.82558 (13)0.59926 (12)0.0164 (3)
C10.17396 (17)0.31502 (16)0.80292 (15)0.0170 (3)
C20.03987 (17)0.26486 (17)0.82120 (15)0.0195 (3)
H20.01880.16760.81710.023*
C30.00431 (17)0.36277 (18)0.84561 (15)0.0195 (3)
C40.07763 (17)0.50429 (17)0.85192 (15)0.0197 (3)
H40.04260.56870.86720.024*
C50.21328 (17)0.55015 (17)0.83529 (14)0.0176 (3)
H50.27190.64800.84080.021*
C60.26640 (16)0.45728 (16)0.81069 (14)0.0148 (3)
C70.41797 (16)0.51242 (15)0.80320 (13)0.0144 (3)
C80.51496 (17)0.45898 (16)0.85426 (14)0.0161 (3)
H80.47970.37940.88640.019*
C90.66232 (17)0.52086 (16)0.85858 (14)0.0165 (3)
H90.72680.48250.89150.020*
C100.71436 (16)0.63841 (16)0.81465 (14)0.0154 (3)
C110.62084 (16)0.69371 (15)0.76086 (14)0.0146 (3)
C120.47150 (16)0.62775 (16)0.75432 (14)0.0150 (3)
H120.40480.66220.71570.018*
C130.89366 (17)0.71843 (16)0.72222 (15)0.0160 (3)
C141.06198 (17)0.81361 (16)0.75919 (15)0.0157 (3)
C151.12842 (17)0.79897 (16)0.67455 (15)0.0175 (3)
C161.36315 (17)0.99312 (17)0.81058 (16)0.0207 (3)
C171.30851 (18)1.01633 (17)0.90099 (16)0.0231 (3)
C181.15754 (18)0.92607 (17)0.87740 (16)0.0204 (3)
H181.11940.93990.93980.024*
C190.68695 (16)0.82890 (15)0.72380 (14)0.0148 (3)
C200.49642 (17)0.69441 (16)0.48941 (14)0.0173 (3)
H20A0.47840.60970.52070.021*
H20B0.53160.68620.41950.021*
C210.34556 (19)0.69431 (19)0.43204 (17)0.0252 (4)
H21A0.30940.70080.50060.038*
H21B0.26750.60520.35940.038*
H21C0.36240.77690.39920.038*
C220.69372 (18)0.95545 (17)0.56353 (16)0.0220 (3)
H22A0.73121.04150.63570.026*
H22B0.61740.95390.48350.026*
C230.8299 (2)0.96539 (19)0.53800 (18)0.0288 (4)
H23A0.90510.96600.61690.043*
H23B0.87941.05410.51680.043*
H23C0.79230.88240.46400.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0241 (2)0.0259 (2)0.0298 (2)0.00427 (17)0.01557 (17)0.00399 (17)
Cl20.01363 (19)0.0355 (2)0.0353 (2)0.00161 (17)0.01171 (17)0.00979 (19)
F10.0238 (5)0.0163 (5)0.0400 (6)0.0075 (4)0.0168 (5)0.0064 (4)
F20.0139 (5)0.0356 (6)0.0319 (5)0.0079 (4)0.0141 (4)0.0120 (4)
F30.0237 (5)0.0331 (6)0.0292 (6)0.0039 (5)0.0099 (5)0.0086 (5)
O10.0106 (5)0.0242 (6)0.0184 (5)0.0064 (4)0.0071 (4)0.0093 (4)
O20.0155 (5)0.0233 (6)0.0194 (5)0.0079 (5)0.0071 (4)0.0040 (4)
O30.0162 (5)0.0171 (5)0.0195 (5)0.0016 (4)0.0057 (4)0.0052 (4)
N10.0166 (6)0.0224 (7)0.0238 (7)0.0089 (6)0.0113 (5)0.0093 (5)
N20.0156 (6)0.0136 (6)0.0177 (6)0.0057 (5)0.0066 (5)0.0064 (5)
C10.0158 (7)0.0162 (7)0.0175 (7)0.0073 (6)0.0068 (6)0.0049 (6)
C20.0141 (7)0.0170 (7)0.0178 (7)0.0010 (6)0.0059 (6)0.0054 (6)
C30.0097 (7)0.0278 (8)0.0165 (7)0.0055 (6)0.0057 (6)0.0080 (6)
C40.0152 (7)0.0252 (8)0.0211 (7)0.0118 (7)0.0076 (6)0.0095 (6)
C50.0145 (7)0.0184 (7)0.0181 (7)0.0066 (6)0.0062 (6)0.0087 (6)
C60.0115 (7)0.0166 (7)0.0120 (6)0.0041 (6)0.0040 (5)0.0054 (5)
C70.0115 (7)0.0148 (7)0.0121 (6)0.0035 (6)0.0045 (5)0.0034 (5)
C80.0162 (7)0.0148 (7)0.0144 (7)0.0050 (6)0.0067 (6)0.0066 (5)
C90.0151 (7)0.0192 (7)0.0157 (7)0.0092 (6)0.0061 (6)0.0066 (6)
C100.0101 (6)0.0176 (7)0.0144 (7)0.0038 (6)0.0057 (5)0.0046 (6)
C110.0142 (7)0.0137 (7)0.0134 (6)0.0047 (6)0.0065 (5)0.0042 (5)
C120.0136 (7)0.0158 (7)0.0142 (7)0.0067 (6)0.0053 (5)0.0053 (5)
C130.0159 (7)0.0146 (7)0.0205 (7)0.0085 (6)0.0092 (6)0.0075 (6)
C140.0137 (7)0.0160 (7)0.0200 (7)0.0079 (6)0.0085 (6)0.0088 (6)
C150.0178 (7)0.0166 (7)0.0193 (7)0.0087 (6)0.0092 (6)0.0065 (6)
C160.0134 (7)0.0222 (8)0.0257 (8)0.0067 (6)0.0095 (6)0.0113 (6)
C170.0179 (8)0.0198 (8)0.0208 (8)0.0034 (6)0.0065 (6)0.0018 (6)
C180.0187 (8)0.0227 (8)0.0207 (7)0.0091 (7)0.0115 (6)0.0072 (6)
C190.0124 (7)0.0150 (7)0.0184 (7)0.0065 (6)0.0086 (6)0.0061 (6)
C200.0174 (7)0.0163 (7)0.0154 (7)0.0071 (6)0.0061 (6)0.0045 (6)
C210.0187 (8)0.0245 (8)0.0250 (8)0.0097 (7)0.0037 (7)0.0054 (7)
C220.0215 (8)0.0173 (8)0.0229 (8)0.0067 (7)0.0077 (6)0.0109 (6)
C230.0278 (9)0.0266 (9)0.0302 (9)0.0072 (7)0.0178 (8)0.0141 (7)
Geometric parameters (Å, º) top
Cl1—C151.7255 (16)C8—C91.389 (2)
Cl2—C161.7274 (16)C8—H80.9500
F1—C11.3540 (18)C9—C101.379 (2)
F2—C31.3596 (17)C9—H90.9500
F3—C171.3413 (18)C10—C111.391 (2)
O1—C131.3641 (18)C11—C121.398 (2)
O1—C101.4101 (17)C11—C191.507 (2)
O2—C131.1929 (18)C12—H120.9500
O3—C191.2391 (18)C13—C141.493 (2)
N1—C161.319 (2)C14—C181.394 (2)
N1—C151.330 (2)C14—C151.396 (2)
N2—C191.3444 (19)C16—C171.380 (2)
N2—C201.4682 (19)C17—C181.373 (2)
N2—C221.4704 (19)C18—H180.9500
C1—C21.383 (2)C20—C211.519 (2)
C1—C61.396 (2)C20—H20A0.9900
C2—C31.374 (2)C20—H20B0.9900
C2—H20.9500C21—H21A0.9800
C3—C41.376 (2)C21—H21B0.9800
C4—C51.391 (2)C21—H21C0.9800
C4—H40.9500C22—C231.529 (2)
C5—C61.399 (2)C22—H22A0.9900
C5—H50.9500C22—H22B0.9900
C6—C71.490 (2)C23—H23A0.9800
C7—C81.397 (2)C23—H23B0.9800
C7—C121.397 (2)C23—H23C0.9800
C13—O1—C10116.40 (11)O1—C13—C14110.21 (12)
C16—N1—C15117.65 (13)C18—C14—C15117.25 (14)
C19—N2—C20124.77 (13)C18—C14—C13120.94 (13)
C19—N2—C22117.30 (12)C15—C14—C13121.72 (14)
C20—N2—C22116.24 (12)N1—C15—C14124.14 (14)
F1—C1—C2116.52 (13)N1—C15—Cl1114.07 (11)
F1—C1—C6119.33 (13)C14—C15—Cl1121.77 (12)
C2—C1—C6124.15 (15)N1—C16—C17122.56 (14)
C3—C2—C1116.65 (14)N1—C16—Cl2117.10 (12)
C3—C2—H2121.7C17—C16—Cl2120.33 (13)
C1—C2—H2121.7F3—C17—C18120.62 (15)
F2—C3—C2118.14 (14)F3—C17—C16119.09 (14)
F2—C3—C4118.66 (15)C18—C17—C16120.29 (15)
C2—C3—C4123.19 (14)C17—C18—C14118.05 (14)
C3—C4—C5117.96 (15)C17—C18—H18121.0
C3—C4—H4121.0C14—C18—H18121.0
C5—C4—H4121.0O3—C19—N2122.80 (14)
C4—C5—C6122.29 (14)O3—C19—C11118.38 (13)
C4—C5—H5118.9N2—C19—C11118.82 (13)
C6—C5—H5118.9N2—C20—C21111.98 (13)
C1—C6—C5115.73 (14)N2—C20—H20A109.2
C1—C6—C7123.36 (14)C21—C20—H20A109.2
C5—C6—C7120.78 (13)N2—C20—H20B109.2
C8—C7—C12118.48 (13)C21—C20—H20B109.2
C8—C7—C6121.26 (13)H20A—C20—H20B107.9
C12—C7—C6120.05 (13)C20—C21—H21A109.5
C9—C8—C7120.72 (14)C20—C21—H21B109.5
C9—C8—H8119.6H21A—C21—H21B109.5
C7—C8—H8119.6C20—C21—H21C109.5
C10—C9—C8119.46 (14)H21A—C21—H21C109.5
C10—C9—H9120.3H21B—C21—H21C109.5
C8—C9—H9120.3N2—C22—C23111.44 (14)
C9—C10—C11121.79 (13)N2—C22—H22A109.3
C9—C10—O1116.95 (13)C23—C22—H22A109.3
C11—C10—O1121.19 (13)N2—C22—H22B109.3
C10—C11—C12117.89 (13)C23—C22—H22B109.3
C10—C11—C19119.70 (13)H22A—C22—H22B108.0
C12—C11—C19122.16 (13)C22—C23—H23A109.5
C7—C12—C11121.57 (14)C22—C23—H23B109.5
C7—C12—H12119.2H23A—C23—H23B109.5
C11—C12—H12119.2C22—C23—H23C109.5
O2—C13—O1124.03 (14)H23A—C23—H23C109.5
O2—C13—C14125.75 (14)H23B—C23—H23C109.5
F1—C1—C2—C3178.45 (13)C10—O1—C13—C14169.47 (12)
C6—C1—C2—C31.5 (2)O2—C13—C14—C18147.58 (16)
C1—C2—C3—F2178.57 (13)O1—C13—C14—C1831.7 (2)
C1—C2—C3—C40.2 (2)O2—C13—C14—C1528.9 (2)
F2—C3—C4—C5177.39 (13)O1—C13—C14—C15151.77 (14)
C2—C3—C4—C51.3 (2)C16—N1—C15—C142.1 (2)
C3—C4—C5—C61.0 (2)C16—N1—C15—Cl1179.14 (12)
F1—C1—C6—C5178.17 (13)C18—C14—C15—N10.1 (2)
C2—C1—C6—C51.7 (2)C13—C14—C15—N1176.77 (14)
F1—C1—C6—C76.0 (2)C18—C14—C15—Cl1178.85 (12)
C2—C1—C6—C7174.07 (14)C13—C14—C15—Cl14.5 (2)
C4—C5—C6—C10.4 (2)C15—N1—C16—C172.3 (2)
C4—C5—C6—C7175.48 (13)C15—N1—C16—Cl2177.03 (12)
C1—C6—C7—C833.6 (2)N1—C16—C17—F3179.96 (15)
C5—C6—C7—C8142.01 (15)Cl2—C16—C17—F30.7 (2)
C1—C6—C7—C12151.76 (14)N1—C16—C17—C180.6 (3)
C5—C6—C7—C1232.6 (2)Cl2—C16—C17—C18178.67 (13)
C12—C7—C8—C91.2 (2)F3—C17—C18—C14178.05 (15)
C6—C7—C8—C9173.54 (13)C16—C17—C18—C141.3 (3)
C7—C8—C9—C101.5 (2)C15—C14—C18—C171.6 (2)
C8—C9—C10—C112.7 (2)C13—C14—C18—C17175.12 (15)
C8—C9—C10—O1174.41 (12)C20—N2—C19—O3169.20 (14)
C13—O1—C10—C9124.95 (14)C22—N2—C19—O34.6 (2)
C13—O1—C10—C1157.97 (18)C20—N2—C19—C1110.0 (2)
C9—C10—C11—C121.1 (2)C22—N2—C19—C11174.58 (13)
O1—C10—C11—C12175.89 (13)C10—C11—C19—O355.73 (19)
C9—C10—C11—C19175.39 (14)C12—C11—C19—O3118.36 (16)
O1—C10—C11—C191.6 (2)C10—C11—C19—N2123.49 (15)
C8—C7—C12—C112.8 (2)C12—C11—C19—N262.43 (19)
C6—C7—C12—C11171.97 (13)C19—N2—C20—C21117.76 (16)
C10—C11—C12—C71.7 (2)C22—N2—C20—C2177.50 (17)
C19—C11—C12—C7172.46 (13)C19—N2—C22—C2378.92 (17)
C10—O1—C13—O29.8 (2)C20—N2—C22—C2387.00 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.353.287 (2)170
Symmetry code: (i) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC23H17Cl2F3N2O3
Mr497.29
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)10.635 (3), 10.888 (3), 11.310 (3)
α, β, γ (°)96.838 (1), 109.213 (1), 116.017 (3)
V3)1056.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.47 × 0.45 × 0.41
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.848, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
10358, 4752, 3984
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.00
No. of reflections4752
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.353.287 (2)170
Symmetry code: (i) x1, y1, z.
 

Acknowledgements

This project was supported by the Educational Commission of Zhejiang Province (grant No. GD09071160185). The authors acknowledge Professor Kai-Bei Yu at the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, for the data collection.

References

First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, G. X., Chen, L. L., Li, H. B., Liu, F. J., Hu, J. Q. & Hu, W. X. (2009). Bioorg. Med. Chem. Lett. 19, 4399–4402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhong, G. X., Hu, H. D., Xia, C. N., Jiang, J. S. & Chen, T. T. (2010). J. Chem. Crystallogr. 40, 735–739.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds