metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Bis(pyridin-2-yl) selenide-κ2N,N′]tetra­chloridotin(IV)

aBaku State University, Z. Khalilov St 23, Baku, AZ-1148, Azerbaijan, bR.E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St, Nizhny Novgorod, 603950, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: gunka479@mail.ru

(Received 4 June 2012; accepted 7 June 2012; online 30 June 2012)

The title compound, [SnCl4(C10H8N2Se)], was obtained by the reaction of 2,2′-dipyridyl diselenide with tin tetra­chloride. The SnIV ion is coordinated by two N atoms [Sn—N = 2.266 (2) and 2.274 (2) Å] from the bis­(2-pyrid­yl)selenide ligand and four chloride anions [Sn—Cl = 2.3717 (6)–2.3939 (6) Å] in a distorted octa­hedral geometry. The central six-membered chelate ring has a boat conformation with the Se and Sn atoms deviating by 0.692 (3) and 0.855 (3) Å, respectively, from the mean plane through the remaining four ring atoms. The pyridine rings are inclined to each other by a dihedral angle of 49.62 (8)°. The crystal packing exhibits short inter­molecular Se⋯Cl contacts [3.5417 (7) and 3.5648 (7) Å], weak C—H⋯Cl hydrogen bonds and ππ stacking inter­actions between the pyridine rings with a centroid–centroid distance of 3.683 (3) Å.

Related literature

For the crystal structure of the 2,2′-dipyridyl-selenide ligand, see: Dunne et al. (1995[Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1995). Acta Cryst. C51, 1454-1457.]). For the crystal structures of related compounds, see: Tresoldi et al. (1992[Tresoldi, G., Rotondo, E., Piraino, P., Lanfranchi, M. & Tiripicchio, A. (1992). Inorg. Chim. Acta, 194, 233-241.]); Kondo et al. (1995[Kondo, M., Kawata, S., Kitagawa, S., Kiso, H. & Munakata, M. (1995). Acta Cryst. C51, 567-569.]); Blake et al. (2002[Blake, A. J., George, M. W., Hubberstey, P., Garcia, R. L. & Wilson, C. (2002). Acta Cryst. E58, m96-m98.]); Teles et al. (2006[Teles, W. M., Marinho, M. V., Yoshida, M. I., Speziali, N. L., Krambrock, K., Pinheiro, C. B., Pinhal, N. M., Leitão, A. A. & Machado, F. C. (2006). Inorg. Chim. Acta, 359, 4613-4618.]); Zhao et al. (2007[Zhao, Q.-H., Mu, X.-M. & Fang, R.-B. (2007). Pol. J. Chem. 81, 1369-1373.]); Wriedt et al. (2008a[Wriedt, M., Jess, I. & Näther, C. (2008a). Acta Cryst. E64, m10.],b[Wriedt, M., Jess, I. & Näther, C. (2008b). Acta Cryst. E64, m11.],c[Wriedt, M., Jess, I. & Näther, C. (2008c). Acta Cryst. E64, m315.]).

[Scheme 1]

Experimental

Crystal data
  • [SnCl4(C10H8N2Se)]

  • Mr = 495.63

  • Monoclinic, P 21 /c

  • a = 8.0835 (4) Å

  • b = 12.2153 (5) Å

  • c = 14.4710 (6) Å

  • β = 101.208 (1)°

  • V = 1401.65 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.16 mm−1

  • T = 100 K

  • 0.30 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan [SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.306, Tmax = 0.511

  • 16245 measured reflections

  • 4096 independent reflections

  • 3723 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.00

  • 4096 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −1.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl3i 0.95 2.79 3.3965 (18) 122
C8—H8⋯Cl2ii 0.95 2.83 3.3126 (18) 113
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-Dipyridyl sulfide plays prominent role as useful ligand in coordination chemistry (Tresoldi et al., 1992; Kondo et al., 1995; Blake et al., 2002; Teles et al., 2006; Zhao et al., 2007; Wriedt et al., 2008a, 2008b, 2008c). The important structural feature of these complexes is the practically unchangeable bond angle at sulfur atom. On the other hand, the most labile geometrical parameters in them are the dihedral angle between two pyridine rings as well as the deviation of metal atom from the mean plane of the central six-membered chelate ring passed through the two nitrogen and two carbon atoms due to the different coordination environment. It is interesting to note that 2,2'-dipyridyl selenide is also known (Dunne et al., 1995), however, no structurally characterized metal complexes with this ligand were reported till now.

This article is dedicated to the first structural characterization of metal complex with 2,2'-dipyridyl selenide ligand - [bis(2-pyridyl)selenide-k2N,N')]tetrachlorido-tin(IV), C10H8Cl4N2SeSn (I), which was obtained by the reaction of 2,2'-dipyridyl diselenide with tin tetrachloride (Figure 1).

The molecule of I possesses overall intrinsic Cs (m) symmetry (Figure 2). The tin ion is coordinated by two N atoms [Sn—N 2.266 (2), 2.274 (2) Å] from bis(2-pyridyl)selenide ligand and four chloride anions [Sn—Cl 2.3717 (6)–2.3939 (6) Å] in a distorted octahedral geometry. The central six-membered chelate ring has a boat conformation with the Se and Sn atoms deviating from the mean plane passed through the rest four atoms of the ring at 0.692 (3) and 0.855 (3) Å, respectively. Two pyridine rings are inclined to each other with a dihedral angle of 49.62 (8)°. Remarkably, the value of the bond angle at selenium atom in I (101.51 (10)°) is almost equal to that in the free 2,2'-dipyridyl selenide ligand (101.9 (2)°) (Dunne et al., 1995).

In the crystal, the molecules of I form the chains along the a axis by the attractive intermolecular Se1···Cl2i [3.5417 (7) Å] and Se1···Cl4i [3.5648 (7) Å] interactions. The chains are further linked into a three-dimensional framework by weak C—H···Cl hydrogen bonds (Table 1) and π···π stacking interactions between the pyridine rings with a centroid-centroid distance of 3.683 (3) Å. Symmetry code: (i) x - 1, y, z.

Related literature top

For the crystal structure of the 2,2'-dipyridyl-selenide ligand, see: Dunne et al. (1995). For the crystal structures of related compounds, see: Tresoldi et al. (1992); Kondo et al. (1995); Blake et al. (2002); Teles et al. (2006); Zhao et al. (2007); Wriedt et al. (2008a,b,c).

Experimental top

A solution of SnCl4 (0.13 g, 0.5 mmol) in CH2Cl2 (25 ml) was added to a solution of 2,2'-dipyridyl diselenide (0.16 g, 0.5 mmol) in CH2Cl2 (25 ml) with stirring at room temperature. After 10 min, solvent was evaporated in vacuo. An attempt to re-crystallization of the solid residue from CH3CN led to formation of the powder Se which was separated by filtration of hot solution. The filtrate was concentrated in vacuo. The solid was re-crystallized from CH3CN to give I as yellow crystals. Yield is 82%. M.p. = 541–543 K. 1H NMR (DMSO-d6, 300 MHz, 302 K): δ = 8.48 (d, 2H, J = 4.8), 7.70 (t, 2H, J = 7.8), 7.55 (d, 2H, J = 7.8), 7.28 (dd, 2H, J = 7.8, J = 4.8). Anal. Calcd for C10H8Cl4N2SeSn: C, 24.23; H, 1.63; N, 5.65. Found: C, 24.14;H, 1.59; N, 5.57.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Structure description top

2,2'-Dipyridyl sulfide plays prominent role as useful ligand in coordination chemistry (Tresoldi et al., 1992; Kondo et al., 1995; Blake et al., 2002; Teles et al., 2006; Zhao et al., 2007; Wriedt et al., 2008a, 2008b, 2008c). The important structural feature of these complexes is the practically unchangeable bond angle at sulfur atom. On the other hand, the most labile geometrical parameters in them are the dihedral angle between two pyridine rings as well as the deviation of metal atom from the mean plane of the central six-membered chelate ring passed through the two nitrogen and two carbon atoms due to the different coordination environment. It is interesting to note that 2,2'-dipyridyl selenide is also known (Dunne et al., 1995), however, no structurally characterized metal complexes with this ligand were reported till now.

This article is dedicated to the first structural characterization of metal complex with 2,2'-dipyridyl selenide ligand - [bis(2-pyridyl)selenide-k2N,N')]tetrachlorido-tin(IV), C10H8Cl4N2SeSn (I), which was obtained by the reaction of 2,2'-dipyridyl diselenide with tin tetrachloride (Figure 1).

The molecule of I possesses overall intrinsic Cs (m) symmetry (Figure 2). The tin ion is coordinated by two N atoms [Sn—N 2.266 (2), 2.274 (2) Å] from bis(2-pyridyl)selenide ligand and four chloride anions [Sn—Cl 2.3717 (6)–2.3939 (6) Å] in a distorted octahedral geometry. The central six-membered chelate ring has a boat conformation with the Se and Sn atoms deviating from the mean plane passed through the rest four atoms of the ring at 0.692 (3) and 0.855 (3) Å, respectively. Two pyridine rings are inclined to each other with a dihedral angle of 49.62 (8)°. Remarkably, the value of the bond angle at selenium atom in I (101.51 (10)°) is almost equal to that in the free 2,2'-dipyridyl selenide ligand (101.9 (2)°) (Dunne et al., 1995).

In the crystal, the molecules of I form the chains along the a axis by the attractive intermolecular Se1···Cl2i [3.5417 (7) Å] and Se1···Cl4i [3.5648 (7) Å] interactions. The chains are further linked into a three-dimensional framework by weak C—H···Cl hydrogen bonds (Table 1) and π···π stacking interactions between the pyridine rings with a centroid-centroid distance of 3.683 (3) Å. Symmetry code: (i) x - 1, y, z.

For the crystal structure of the 2,2'-dipyridyl-selenide ligand, see: Dunne et al. (1995). For the crystal structures of related compounds, see: Tresoldi et al. (1992); Kondo et al. (1995); Blake et al. (2002); Teles et al. (2006); Zhao et al. (2007); Wriedt et al. (2008a,b,c).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of 2,2'-dipyridyl diselenide with tin tetrachloride.
[Figure 2] Fig. 2. The molecular structure of I showing the atomic numbering and 50% probability displacement ellipsoids.
[Bis(pyridin-2-yl) selenide-κ2N,N']tetrachloridotin(IV) top
Crystal data top
[SnCl4(C10H8N2Se)]F(000) = 936
Mr = 495.63Dx = 2.349 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9615 reflections
a = 8.0835 (4) Åθ = 2.2–30.0°
b = 12.2153 (5) ŵ = 5.16 mm1
c = 14.4710 (6) ÅT = 100 K
β = 101.208 (1)°Prism, yellow
V = 1401.65 (11) Å30.30 × 0.24 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
4096 independent reflections
Radiation source: fine-focus sealed tube3723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
[SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.306, Tmax = 0.511k = 1717
16245 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.018P)2 + 5.2P]
where P = (Fo2 + 2Fc2)/3
4096 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 1.10 e Å3
Crystal data top
[SnCl4(C10H8N2Se)]V = 1401.65 (11) Å3
Mr = 495.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0835 (4) ŵ = 5.16 mm1
b = 12.2153 (5) ÅT = 100 K
c = 14.4710 (6) Å0.30 × 0.24 × 0.15 mm
β = 101.208 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
4096 independent reflections
Absorption correction: multi-scan
[SADABS; Sheldrick, 1998)
3723 reflections with I > 2σ(I)
Tmin = 0.306, Tmax = 0.511Rint = 0.026
16245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.00Δρmax = 1.64 e Å3
4096 reflectionsΔρmin = 1.10 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.381830 (19)0.755376 (12)0.120929 (11)0.01034 (5)
Se10.08948 (3)0.76213 (2)0.108418 (18)0.01534 (6)
Cl10.46143 (7)0.84715 (5)0.00939 (4)0.01648 (11)
Cl20.59551 (7)0.84559 (5)0.23278 (4)0.01729 (11)
Cl30.27580 (8)0.67096 (5)0.24510 (4)0.01741 (11)
Cl40.54619 (7)0.59645 (5)0.10454 (4)0.01745 (11)
N10.2061 (3)0.89921 (17)0.12452 (14)0.0129 (4)
N20.1674 (3)0.68416 (17)0.01238 (14)0.0131 (4)
C10.0371 (3)0.8955 (2)0.11795 (17)0.0145 (4)
C20.0569 (3)0.9903 (2)0.12213 (18)0.0177 (5)
H20.17580.98620.11670.021*
C30.0241 (3)1.0905 (2)0.13423 (18)0.0182 (5)
H30.03821.15560.13870.022*
C40.1969 (3)1.0950 (2)0.13974 (18)0.0184 (5)
H40.25511.16290.14770.022*
C50.2831 (3)0.9981 (2)0.13332 (17)0.0156 (4)
H50.40111.00120.13520.019*
C60.0019 (3)0.68436 (19)0.01536 (17)0.0134 (4)
C70.1159 (3)0.6267 (2)0.04941 (18)0.0167 (5)
H70.23160.62710.04500.020*
C80.0625 (3)0.5688 (2)0.12034 (18)0.0187 (5)
H80.14010.52660.16390.022*
C90.1063 (3)0.5734 (2)0.12678 (17)0.0176 (5)
H90.14510.53690.17650.021*
C100.2175 (3)0.6317 (2)0.06004 (17)0.0153 (4)
H100.33280.63510.06510.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.00923 (7)0.01100 (8)0.01039 (8)0.00012 (5)0.00091 (5)0.00026 (5)
Se10.01033 (11)0.01823 (12)0.01802 (12)0.00126 (8)0.00412 (9)0.00212 (9)
Cl10.0171 (3)0.0176 (3)0.0157 (3)0.0012 (2)0.0055 (2)0.0024 (2)
Cl20.0152 (2)0.0166 (3)0.0178 (3)0.0017 (2)0.0023 (2)0.0027 (2)
Cl30.0206 (3)0.0184 (3)0.0138 (2)0.0021 (2)0.0049 (2)0.0021 (2)
Cl40.0161 (3)0.0151 (3)0.0203 (3)0.0045 (2)0.0014 (2)0.0015 (2)
N10.0133 (9)0.0124 (9)0.0131 (9)0.0010 (7)0.0025 (7)0.0002 (7)
N20.0120 (9)0.0135 (9)0.0132 (9)0.0004 (7)0.0012 (7)0.0006 (7)
C10.0154 (10)0.0161 (11)0.0120 (10)0.0006 (8)0.0028 (8)0.0000 (8)
C20.0177 (11)0.0197 (12)0.0168 (11)0.0035 (9)0.0058 (9)0.0009 (9)
C30.0261 (13)0.0138 (11)0.0165 (11)0.0055 (9)0.0087 (10)0.0033 (9)
C40.0250 (13)0.0122 (10)0.0184 (11)0.0015 (9)0.0053 (10)0.0007 (9)
C50.0160 (11)0.0142 (10)0.0169 (11)0.0004 (8)0.0038 (9)0.0016 (9)
C60.0130 (10)0.0112 (10)0.0157 (11)0.0003 (8)0.0018 (8)0.0012 (8)
C70.0138 (10)0.0155 (11)0.0187 (11)0.0013 (8)0.0018 (9)0.0017 (9)
C80.0206 (12)0.0142 (11)0.0174 (11)0.0022 (9)0.0061 (9)0.0004 (9)
C90.0226 (12)0.0159 (11)0.0127 (11)0.0031 (9)0.0007 (9)0.0016 (8)
C100.0154 (10)0.0166 (11)0.0138 (10)0.0030 (8)0.0024 (8)0.0021 (8)
Geometric parameters (Å, º) top
Sn1—N12.266 (2)C2—H20.9500
Sn1—N22.274 (2)C3—C41.385 (4)
Sn1—Cl32.3717 (6)C3—H30.9500
Sn1—Cl12.3873 (6)C4—C51.385 (3)
Sn1—Cl42.3901 (6)C4—H40.9500
Sn1—Cl22.3939 (6)C5—H50.9500
Se1—C61.910 (2)C6—C71.391 (3)
Se1—C11.914 (2)C7—C81.383 (4)
N1—C11.351 (3)C7—H70.9500
N1—C51.353 (3)C8—C91.387 (4)
N2—C61.347 (3)C8—H80.9500
N2—C101.356 (3)C9—C101.382 (3)
C1—C21.393 (3)C9—H90.9500
C2—C31.383 (4)C10—H100.9500
N1—Sn1—N285.14 (7)C3—C2—H2120.2
N1—Sn1—Cl389.95 (5)C1—C2—H2120.2
N2—Sn1—Cl391.02 (5)C2—C3—C4119.3 (2)
N1—Sn1—Cl185.44 (5)C2—C3—H3120.4
N2—Sn1—Cl185.43 (5)C4—C3—H3120.4
Cl3—Sn1—Cl1174.40 (2)C3—C4—C5118.5 (2)
N1—Sn1—Cl4174.23 (5)C3—C4—H4120.7
N2—Sn1—Cl489.11 (5)C5—C4—H4120.7
Cl3—Sn1—Cl490.68 (2)N1—C5—C4122.7 (2)
Cl1—Sn1—Cl493.59 (2)N1—C5—H5118.6
N1—Sn1—Cl290.05 (5)C4—C5—H5118.6
N2—Sn1—Cl2174.98 (5)N2—C6—C7122.1 (2)
Cl3—Sn1—Cl290.42 (2)N2—C6—Se1123.11 (18)
Cl1—Sn1—Cl292.76 (2)C7—C6—Se1114.76 (18)
Cl4—Sn1—Cl295.68 (2)C8—C7—C6119.2 (2)
C6—Se1—C1101.51 (10)C8—C7—H7120.4
C1—N1—C5118.5 (2)C6—C7—H7120.4
C1—N1—Sn1127.01 (16)C7—C8—C9118.8 (2)
C5—N1—Sn1114.52 (16)C7—C8—H8120.6
C6—N2—C10118.3 (2)C9—C8—H8120.6
C6—N2—Sn1127.28 (16)C10—C9—C8119.2 (2)
C10—N2—Sn1114.38 (16)C10—C9—H9120.4
N1—C1—C2121.4 (2)C8—C9—H9120.4
N1—C1—Se1123.52 (18)N2—C10—C9122.2 (2)
C2—C1—Se1114.99 (18)N2—C10—H10118.9
C3—C2—C1119.5 (2)C9—C10—H10118.9
N2—Sn1—N1—C137.1 (2)C6—Se1—C1—C2136.94 (19)
Cl3—Sn1—N1—C153.95 (19)N1—C1—C2—C30.7 (4)
Cl1—Sn1—N1—C1122.9 (2)Se1—C1—C2—C3176.52 (19)
Cl2—Sn1—N1—C1144.38 (19)C1—C2—C3—C41.5 (4)
N2—Sn1—N1—C5142.22 (17)C2—C3—C4—C50.3 (4)
Cl3—Sn1—N1—C5126.76 (17)C1—N1—C5—C42.7 (4)
Cl1—Sn1—N1—C556.43 (16)Sn1—N1—C5—C4177.9 (2)
Cl2—Sn1—N1—C536.33 (17)C3—C4—C5—N11.9 (4)
N1—Sn1—N2—C642.8 (2)C10—N2—C6—C74.4 (3)
Cl3—Sn1—N2—C647.1 (2)Sn1—N2—C6—C7172.03 (18)
Cl1—Sn1—N2—C6128.6 (2)C10—N2—C6—Se1176.05 (18)
Cl4—Sn1—N2—C6137.7 (2)Sn1—N2—C6—Se17.5 (3)
N1—Sn1—N2—C10140.65 (18)C1—Se1—C6—N240.4 (2)
Cl3—Sn1—N2—C10129.48 (17)C1—Se1—C6—C7140.06 (19)
Cl1—Sn1—N2—C1054.85 (17)N2—C6—C7—C81.2 (4)
Cl4—Sn1—N2—C1038.82 (17)Se1—C6—C7—C8179.23 (19)
C5—N1—C1—C21.4 (4)C6—C7—C8—C92.4 (4)
Sn1—N1—C1—C2179.31 (17)C7—C8—C9—C102.7 (4)
C5—N1—C1—Se1178.36 (18)C6—N2—C10—C94.1 (4)
Sn1—N1—C1—Se12.4 (3)Sn1—N2—C10—C9172.81 (19)
C6—Se1—C1—N145.9 (2)C8—C9—C10—N20.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl3i0.952.793.3965 (18)122
C8—H8···Cl2ii0.952.833.3126 (18)113
C8—H8···Cl3iii0.952.813.6870 (19)154
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[SnCl4(C10H8N2Se)]
Mr495.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.0835 (4), 12.2153 (5), 14.4710 (6)
β (°) 101.208 (1)
V3)1401.65 (11)
Z4
Radiation typeMo Kα
µ (mm1)5.16
Crystal size (mm)0.30 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
[SADABS; Sheldrick, 1998)
Tmin, Tmax0.306, 0.511
No. of measured, independent and
observed [I > 2σ(I)] reflections
16245, 4096, 3723
Rint0.026
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.00
No. of reflections4096
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 1.10

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl3i0.952.793.3965 (18)122
C8—H8···Cl2ii0.952.833.3126 (18)113
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+3/2, z1/2.
 

Acknowledgements

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

References

First citationBlake, A. J., George, M. W., Hubberstey, P., Garcia, R. L. & Wilson, C. (2002). Acta Cryst. E58, m96–m98.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1995). Acta Cryst. C51, 1454–1457.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKondo, M., Kawata, S., Kitagawa, S., Kiso, H. & Munakata, M. (1995). Acta Cryst. C51, 567–569.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeles, W. M., Marinho, M. V., Yoshida, M. I., Speziali, N. L., Krambrock, K., Pinheiro, C. B., Pinhal, N. M., Leitão, A. A. & Machado, F. C. (2006). Inorg. Chim. Acta, 359, 4613–4618.  Web of Science CSD CrossRef CAS Google Scholar
First citationTresoldi, G., Rotondo, E., Piraino, P., Lanfranchi, M. & Tiripicchio, A. (1992). Inorg. Chim. Acta, 194, 233–241.  CSD CrossRef CAS Web of Science Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2008a). Acta Cryst. E64, m10.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2008b). Acta Cryst. E64, m11.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2008c). Acta Cryst. E64, m315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q.-H., Mu, X.-M. & Fang, R.-B. (2007). Pol. J. Chem. 81, 1369–1373.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds