organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-{4-[(1,3-Benzodioxol-5-yl)methyl]piperazin-1-yl}-1-cyclopropyl-6-fluoro-4oxo-1,4-dihydroquinoline-3-carboxylic acid

Shuo Wang, Guangzhi Shan, Huiyuan Guo and Mingliang Liu*

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantan Xili 1#, Beijing, People's Republic of China Correspondence e-mail: Imllyx@yahoo.com.cn

Received 18 April 2012; accepted 25 June 2012

Key indicators: single-crystal X-ray study; T = 118 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.099; data-to-parameter ratio = 12.5.

In the title structure, $C_{25}H_{24}FN_3O_5$, a strong intramolecular $O-H\cdots O$ hydrogen bond is present between the carboxy group at the 3-position and the carbonyl group at the 4-position. In the crystal, molecules are held together by weak $C-H\cdots O$, $C-H\cdots F$ and $\pi-\pi$ [centroid–centroid distance 3.6080 (8) Å] interactions. The 1,4-dihydroquinoline ring and cyclopropyl group are not in the same plane, making an interplanar angle of 57.52 (8)°.

Related literature

For the synthesis and properties of quinolone derivatives, see Basuri *et al.* (2011); Feng *et al.* (2011); Guo *et al.* (2011); Liu *et al.* (2010); Sharma *et al.* (2010); Xu *et al.* (2007). For the cryogenic cooler used in the data collection, see Cosier & Glazer (1986). For hydrogen bonding, see Desiraju & Steiner (1999).

Experimental

Crystal data $C_{25}H_{24}FN_3O_5$ $M_r = 465.47$ Triclinic, $P\overline{1}$ a = 8.6200 (5) Å b = 9.7068 (9) Å c = 13.7680 (13) Å

 $\begin{array}{l} \alpha = 79.089 \ (8)^{\circ} \\ \beta = 76.000 \ (6)^{\circ} \\ \gamma = 87.939 \ (6)^{\circ} \\ V = 1097.52 \ (16) \\ Å^{3} \\ Z = 2 \\ Cu \ K\alpha \ radiation \end{array}$

CrossMar

 $0.55 \times 0.35 \times 0.15 \text{ mm}$

10407 measured reflections

 $R_{\rm int} = 0.024$

3876 independent reflections

3518 reflections with $I > 2\sigma(I)$

 $\mu = 0.88 \text{ mm}^{-1}$ T = 118 K

Data collection

Oxford Gemini S Ultra Sapphire CCD diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{min} = 0.645, T_{max} = 0.880$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 1.04	refinement
3876 reflections	$\Delta a = 0.25 \text{ e} \text{ Å}^{-3}$
3876 reflections 311 parameters	$\Delta \rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.20 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O2	0.992 (19)	1.563 (19)	2.5215 (13)	161.1 (17)
$C20-H20\cdots O13^{i}$	0.93	2.58	3.3206 (17)	137
C28-H28aF1	0.97	2.18	2.8587 (15)	126
C32-H32b···O2 ⁱⁱ	0.97	2.49	3.4144 (16)	158
$C34-H34b\cdots O3^{iii}$	0.97	2.44	3.3853 (18)	165
Symmetry codes: (x - 1, y + 1, z + 1.	(i) $-x + 1, -y$	+2, -z+1; ((ii) $-x+2, -y$	+1, -z; (iii)

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*, *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

This work was supported by New Teachers' Fund for Doctor Stations, Ministry of Education (20101106120032) and the IMB Research Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2250).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Basuri, T. S., Vishal, M. & Thakar, P. M. (2011). J. Pharm. Res. 4, 1294–1297. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: International Union of Crystallography and Oxford University Press Inc.
- Feng, L.-S., Liu, M.-L., Zhang, S., Chai, Y., Wang, B., Zhang, Y.-B., Lv, K., Guan, Y., Guo, H.-Y. & Xiao, C.-L. (2011). Eur. J. Med. Chem. 46, 341–348.
- Guo, Q., Liu, M.-L., Feng, L.-S., Lv, K., Guan, Y., Guo, H.-Y. & Xiao, C.-L. (2011). Arch. Pharm. Chem. Life Sci. 344, 802–809.
- Liu, M.-L., Feng, L.-S., Chai, Y., Guo, H.-Y. & Xiao, C.-L. (2010). Chin. J. New Drugs, 19, 190–198.
- Sharma, P. C., Jain, A., Jain, S., Pahwa, R. & Yar, M. S. (2010). J. Enz. Med. Chem. 25, 577–589.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, H.-T., Tao, F.-R., Liang, Y.-Z., Wang, G.-X., Zou, Y.-L., Hu, Y.-J. & Zhang, X.-Z. (2007). Chin. J. Infect. Chemother. 7, 92–95.

supporting information

Acta Cryst. (2012). E68, o2264 [https://doi.org/10.1107/S1600536812028711]

7-{4-[(1,3-Benzodioxol-5-yl)methyl]piperazin-1-yl}-1-cyclopropyl-6-fluoro-4oxo-1,4-dihydroquinoline-3-carboxylic acid

Shuo Wang, Guangzhi Shan, Huiyuan Guo and Mingliang Liu

S1. Comment

Ciprofloxacin, the most applied antibacterial agent worldwide (Basuri *et al.*, 2011), is used extensively for the treatment of various bacterial infections including tuberculosis (Liu *et al.*, 2010). However, extensive use and even abuse have brought increasing ciprofloxacin resistance to many Gram-positive and Gram-negative pathogens, as well as to Mycobacterium tuberculosis (Xu *et al.*, 2007; Liu *et al.*, 2010). Recently, as a part of our program which is aimed to increase potency and to overcome resistance of existing quinolones by their structural modifications, we have focused our attention on introducing various lipophilic groups, such as an isatin or a coumarin moieties, to ciprofloxacin (Feng *et al.*, 2011; Guo *et al.*, 2011). Some of the ciprofloxacin derivatives were found to have improved activity against drug-resistant Mycobacterium tuberculosis is proportional to increment of lipophilicity in ciprofloxacin derivatives (Sharma *et al.*, 2010).

The crystal structure of the title compound is reported here. The title compound shows remarkable improvement in lipophilicity by introduction of a lipophilic 3,4-methylenedioxyl benzyl group to the N atom which is situated on the C-7 piperazine ring of ciprofloxacin.

The title molecule is shown in Fig. 1. The 1,4-dihydroquinoline ring and cyclopropyl group (C31\C32\C33) are not in the same plane and the interplanar angle between them is 57.52 (8)°. The six-membered piperazine ring adopts a chair conformation. In the title structure, there is a strong intramolecular hydrogen bond O—H···O and a weak C-H···F interaction (Table 1; Fig. 2) (Desiraju & Steiner, 1999). The intermolecular interactions that are present in the structure are weak ones exclusively: a) C—H···O hydrogen bonds (Table 1) and b) π -electron ring — π -electron ring interactions in the structure as it is indicated by the distance 3.6080 (8) Å between the respective centroids of the benzene rings C7\C8\C17\C18\C12\C9 (symmetry codes *x*, *y*, *z* and 1-*x*, 1-*y*, -*z*).

S2. Experimental

To a stirred solution of piperonyl alcohol (0.61 g, 4 mmol) in anhydrous methylene chloride (50 ml) at $0-5^{\circ}$ C was added phosphorus tribromide (0.5 ml, 5 mmol) dropwise over a period of 15 min. The reaction mixture was stirred for additional 30 min at the $0-5^{\circ}$ C, washed with saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was dissolved in *N*,*N*-dimethyl formamide (20 ml) and anhydrous potassium carbonate (0.83 g, 6 mmol) with ciprofloxacin hydrochloride (0.51 g, 1.4 mmol) were added to this solution. The reaction mixture was heated to 40°C and stirred at this temperature for 14 h and then diluted with methylene chloride (50 ml), washed with distilled water (50 ml), dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel), eluted by methylene chloride and methanol in proportion 10:1 (v/v) to yield the title compound (0.32 g, 17.2 wt. %) as transparent block-like light yellow crystals, the longest

distance of which was about 4 mm. The measured sample was cut from a larger crystal. Melting point: 238–239°C. ¹H-NMR(DMSO, *δ*): 1.16–1.18 (2*H*, m, CH₂ cyclopropyl), 1.28–1.31(2*H*, m, CH₂cyclopropyl), 2.57–2.58 (4*H*, m, 2CH₂ piperazinyl), 3.30–3.33 (4*H*, m, 2CH₂ piperazinyl), 3.47 (2*H*, s, CH₂ Benzyl), 3.78–3.82 (1*H*, m, CH cyclopropyl), 5.99(2*H*, s, OCH₂O), 6.78–6.90(3*H*, m, CH benzyl), 7.55–7.57(1*H*, d, C8, *J*=8 Hz), 7.88–7.91(1*H*, d, C5, *J*=12 Hz), 8.649(1*H*, s, C2), 15.21(1*H*, s, COOH). MS (ESI, m/z): 466 (*M*+H⁺). HRMS(ESI,m/z): C₂₅H₂₄FN₃O₅ Calculated:466.1769; Found:466.1772.

S3. Refinement

All the H atoms were discernible in the difference electron density map. The positional parameters of the hydrogen H3 involved in the strong hydrogen bond O—H···O (Table 1) were refined freely while its displacement parameter was constrained: $U_{iso}(H3)=1.5U_{eq}(O3)$. The aryl, methine and methylene hydrogens were constrained in the riding atom approximation: C—H = 0.95, 1.0, 0.99 Å for aryl, methine and methylene H atoms, respectively, while $U_{iso}(H) = 1.2U_{eq}(C)$ for aryl, methine and methylene.

Figure 1

The title molecule with the atom-numbering scheme. The displacement parameters are shown at the 30% probability level.

Figure 2

Packing of the title molecules viewed along the *a* direction. The dashed lines indicate the hydrogen bonds.

7-{4-[(1,3-Benzodioxol-5-yl)methyl]piperazin-1-yl}-1-cyclopropyl-6- fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid

Crystal data

$C_{25}H_{24}FN_3O_5$	Z = 2
$M_r = 465.47$	F(000) = 488
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.409 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Melting point = $511-512$ K
a = 8.6200 (5) Å	Cu <i>K</i> α radiation, $\lambda = 1.54180$ Å
b = 9.7068 (9) Å	Cell parameters from 6313 reflections
c = 13.7680 (13) Å	$\theta = 3.4 - 66.9^{\circ}$
$\alpha = 79.089 \ (8)^{\circ}$	$\mu = 0.88 \text{ mm}^{-1}$
$\beta = 76.000 \ (6)^{\circ}$	T = 118 K
$\gamma = 87.939~(6)^{\circ}$	Block, colourless
$V = 1097.52 (16) Å^3$	$0.55 \times 0.35 \times 0.15 \text{ mm}$
Data collection	
Oxford Gemini S Ultra Sapphire CCD	$T_{\rm min} = 0.645, T_{\rm max} = 0.880$
diffractometer	10407 measured reflections
Radiation source: Enhance Ultra (Cu) X-ray	3876 independent reflections
Source	3518 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
Detector resolution: 10.4713 pixels mm ⁻¹	$\theta_{\rm max} = 67.0^{\circ}, \theta_{\rm min} = 3.4^{\circ}$
ω scans	$h = -8 \rightarrow 10$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(CrysAlis PRO; Agilent, 2011)	$l = -15 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.099$	H atoms treated by a mixture of independent
S = 1.04	and constrained refinement
3876 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2 + 0.3141P]$
311 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
93 constraints	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min}$ = -0.20 e Å ⁻³
direct methods	Extinction correction: SHELXL97 (Sheldrick,
	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.0056 (6)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.57863 (9)	0.83866 (7)	-0.04072 (5)	0.0264 (2)	
O2	0.99664 (10)	0.51558 (9)	-0.18920 (7)	0.0247 (2)	
03	1.16469 (11)	0.30144 (10)	-0.21487 (7)	0.0289 (2)	
H3	1.115 (2)	0.395 (2)	-0.2171 (14)	0.043*	
O4	1.11852 (12)	0.10674 (10)	-0.09798 (8)	0.0362 (3)	
N5	0.25302 (12)	0.83641 (10)	0.31959 (8)	0.0191 (2)	
N6	0.75205 (12)	0.29596 (10)	0.08703 (8)	0.0192 (2)	
C7	0.71154 (14)	0.43605 (12)	0.05691 (9)	0.0177 (3)	
C8	0.79299 (14)	0.51058 (13)	-0.03849 (9)	0.0182 (3)	
C9	0.59360 (14)	0.50087 (13)	0.12175 (9)	0.0185 (3)	
H9	0.5426	0.4500	0.1851	0.022*	
C10	0.95480 (14)	0.30413 (13)	-0.06705 (10)	0.0206 (3)	
N11	0.43402 (12)	0.70790 (10)	0.15591 (8)	0.0188 (2)	
C12	0.55067 (14)	0.63977 (12)	0.09375 (9)	0.0178 (3)	
013	0.41707 (12)	1.17463 (10)	0.53985 (8)	0.0342 (3)	
O14	0.31968 (13)	1.39049 (10)	0.47811 (8)	0.0345 (3)	
C15	0.20577 (14)	0.70110 (13)	0.30375 (10)	0.0219 (3)	
H15a	0.1285	0.7158	0.2620	0.026*	
H15b	0.1548	0.6445	0.3690	0.026*	
C16	0.92076 (14)	0.44720 (13)	-0.10431 (9)	0.0193 (3)	
C17	0.74649 (14)	0.64957 (13)	-0.06867 (9)	0.0197 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

1117	0.70(0	0.7000	0 1220	0.024*
HI/	0.7969	0.7009	-0.1320	0.024*
	0.62876 (14)	0.70857 (12)	-0.00577(9)	0.0194 (3)
C19	0.14668 (15)	1.29718 (14)	0.38467 (10)	0.0253 (3)
H19	0.1062	1.3835	0.3603	0.030*
C20	0.26908 (14)	1.03395 (13)	0.45990 (10)	0.0230 (3)
H20	0.3100	0.9483	0.4851	0.028*
C21	0.10290 (15)	1.17255 (14)	0.36068 (10)	0.0229 (3)
H21	0.0319	1.1768	0.3190	0.027*
C22	1.08468 (15)	0.22684 (14)	-0.12629 (10)	0.0248 (3)
C23	0.34835 (14)	0.62297 (13)	0.25215 (9)	0.0200 (3)
H23a	0.4203	0.5994	0.2970	0.024*
H23b	0.3119	0.5362	0.2393	0.024*
C24	0.86751 (15)	0.23478 (13)	0.02508 (10)	0.0211 (3)
H24	0.8892	0.1407	0.0458	0.025*
C25	0.25223 (15)	1.28555 (13)	0.44597 (10)	0.0232 (3)
C26	0.11331 (14)	0.90959 (13)	0.36969 (10)	0.0228 (3)
H26a	0.0564	0.8482	0.4311	0.027*
H26b	0.0415	0.9323	0.3246	0.027*
C27	0.16168 (14)	1.04287 (13)	0.39686 (9)	0.0205 (3)
C28	0.47789 (14)	0.84670 (12)	0.17178 (10)	0.0208 (3)
H28a	0.5293	0.9037	0.1068	0.025*
H28b	0.5528	0.8348	0.2151	0.025*
C29	0.32998 (15)	0.91944 (13)	0.22088 (10)	0.0212 (3)
H29a	0.3590	1.0111	0.2297	0.025*
H29b	0.2559	0.9326	0.1770	0.025*
C30	0.31084 (14)	1.15687 (14)	0.48255 (10)	0.0227 (3)
C31	0.66294 (15)	0.21667 (13)	0.18405 (10)	0.0223 (3)
H31	0.5509	0.1960	0.1879	0.027*
C32	0.69772 (16)	0.24489 (14)	0.28023 (10)	0.0251 (3)
H32a	0.6086	0.2430	0.3391	0.030*
H32b	0.7815	0.3124	0.2739	0.030*
C33	0.74586 (17)	0.10871 (14)	0.24508 (10)	0.0270 (3)
H33a	0.8587	0.0942	0.2178	0.032*
Н33b	0.6859	0.0248	0.2829	0.032*
C34	0.40629 (18)	1.31863 (15)	0.54924 (11)	0.0308 (3)
H34a	0.5125	1.3593	0.5346	0.037*
H34b	0.3511	1.3271	0.6181	0.037*
	-		-	

Atomic displacement parameters $(Å^2)$

	<i>L</i> /11	L ²²	L /33	1/12	1/13	1/23
	0	0	0	0	0	0
F1	0.0320 (4)	0.0191 (4)	0.0236 (4)	0.0074 (3)	-0.0035 (3)	0.0020 (3)
O2	0.0194 (4)	0.0269 (5)	0.0244 (5)	-0.0011 (4)	-0.0001 (4)	-0.0028(4)
O3	0.0208 (5)	0.0317 (5)	0.0315 (5)	0.0025 (4)	0.0002 (4)	-0.0081 (4)
O4	0.0323 (6)	0.0238 (5)	0.0467 (6)	0.0058 (4)	0.0024 (5)	-0.0085 (4)
N5	0.0166 (5)	0.0178 (5)	0.0217 (5)	-0.0018 (4)	-0.0008 (4)	-0.0051 (4)
N6	0.0191 (5)	0.0158 (5)	0.0227 (5)	-0.0007 (4)	-0.0058 (4)	-0.0029 (4)
C7	0.0170 (6)	0.0162 (6)	0.0221 (6)	-0.0017 (4)	-0.0083 (5)	-0.0037(5)

supporting information

C8	0.0157 (6)	0.0202 (6)	0.0208 (6)	-0.0017 (5)	-0.0069 (5)	-0.0051 (5)
C9	0.0180 (6)	0.0188 (6)	0.0183 (6)	-0.0027 (5)	-0.0042 (5)	-0.0020 (5)
C10	0.0170 (6)	0.0214 (6)	0.0258 (7)	-0.0001 (5)	-0.0069 (5)	-0.0081 (5)
N11	0.0175 (5)	0.0169 (5)	0.0210 (5)	-0.0011 (4)	-0.0021 (4)	-0.0039 (4)
C12	0.0148 (6)	0.0186 (6)	0.0214 (6)	-0.0012 (4)	-0.0062 (5)	-0.0050 (5)
013	0.0371 (6)	0.0307 (5)	0.0432 (6)	0.0005 (4)	-0.0224 (5)	-0.0109 (4)
O14	0.0457 (6)	0.0225 (5)	0.0402 (6)	-0.0072 (4)	-0.0188 (5)	-0.0052 (4)
C15	0.0188 (6)	0.0205 (6)	0.0249 (6)	-0.0052 (5)	-0.0009 (5)	-0.0047 (5)
C16	0.0152 (6)	0.0225 (6)	0.0221 (6)	-0.0034 (5)	-0.0066 (5)	-0.0059 (5)
C17	0.0194 (6)	0.0199 (6)	0.0189 (6)	-0.0034 (5)	-0.0043 (5)	-0.0013 (5)
C18	0.0201 (6)	0.0154 (6)	0.0230 (6)	0.0007 (5)	-0.0072 (5)	-0.0016 (5)
C19	0.0260 (7)	0.0204 (6)	0.0267 (7)	-0.0003 (5)	-0.0045 (5)	0.0007 (5)
C20	0.0195 (6)	0.0216 (6)	0.0267 (7)	0.0032 (5)	-0.0029 (5)	-0.0054 (5)
C21	0.0192 (6)	0.0266 (7)	0.0216 (6)	-0.0009 (5)	-0.0036 (5)	-0.0030 (5)
C22	0.0190 (6)	0.0257 (7)	0.0312 (7)	-0.0011 (5)	-0.0054 (5)	-0.0097 (6)
C23	0.0208 (6)	0.0174 (6)	0.0208 (6)	-0.0032 (5)	-0.0027 (5)	-0.0032 (5)
C24	0.0194 (6)	0.0183 (6)	0.0280 (7)	0.0006 (5)	-0.0081 (5)	-0.0071 (5)
C25	0.0239 (6)	0.0195 (6)	0.0237 (6)	-0.0047 (5)	-0.0008 (5)	-0.0034 (5)
C26	0.0165 (6)	0.0250 (7)	0.0257 (7)	-0.0014 (5)	-0.0005 (5)	-0.0076 (5)
C27	0.0149 (6)	0.0236 (6)	0.0205 (6)	-0.0012 (5)	0.0026 (5)	-0.0062 (5)
C28	0.0188 (6)	0.0165 (6)	0.0250 (6)	-0.0028 (5)	-0.0003 (5)	-0.0045 (5)
C29	0.0203 (6)	0.0178 (6)	0.0235 (6)	-0.0006 (5)	-0.0019 (5)	-0.0034 (5)
C30	0.0176 (6)	0.0273 (7)	0.0232 (6)	-0.0015 (5)	-0.0038 (5)	-0.0058 (5)
C31	0.0216 (6)	0.0186 (6)	0.0252 (7)	-0.0034 (5)	-0.0048 (5)	-0.0003 (5)
C32	0.0270 (7)	0.0228 (6)	0.0235 (7)	-0.0004 (5)	-0.0038 (5)	-0.0020 (5)
C33	0.0339 (7)	0.0198 (6)	0.0271 (7)	0.0010 (5)	-0.0093 (6)	-0.0011 (5)
C34	0.0354 (8)	0.0301 (7)	0.0292 (7)	-0.0067 (6)	-0.0087 (6)	-0.0083 (6)

Geometric parameters (Å, °)

F1-C18	1.3580 (14)	C17—C18	1.3522 (17)
O2—C16	1.2657 (15)	С19—Н19	0.9300
O3—H3	0.992 (19)	C19—C21	1.3998 (19)
O3—C22	1.3349 (17)	C19—C25	1.3714 (19)
O4—C22	1.2061 (17)	C20—H20	0.9300
N5—C15	1.4590 (15)	C20—C27	1.4044 (18)
N5—C26	1.4673 (15)	C20—C30	1.3700 (18)
N5—C29	1.4575 (16)	C21—H21	0.9300
N6—C7	1.4020 (16)	C21—C27	1.3886 (18)
N6—C24	1.3451 (16)	C23—H23a	0.9700
N6—C31	1.4573 (16)	C23—H23b	0.9700
C7—C8	1.4043 (17)	C24—H24	0.9300
С7—С9	1.3978 (18)	C25—C30	1.3816 (18)
C8—C16	1.4464 (17)	C26—H26a	0.9700
C8—C17	1.4082 (17)	C26—H26b	0.9700
С9—Н9	0.9300	C26—C27	1.5116 (17)
C9—C12	1.3927 (17)	C28—H28a	0.9700
C10—C16	1.4324 (18)	C28—H28b	0.9700

supporting information

C10—C22	1.4870 (18)	C28—C29	1.5100 (16)
C10—C24	1.3710 (18)	C29—H29a	0.9700
N11—C12	1.3896 (16)	С29—Н29Ь	0.9700
N11—C23	1.4620 (15)	С31—Н31	0.9800
N11—C28	1.4812 (15)	C31—C32	1.5013 (18)
C12—C18	1.4199 (17)	C31—C33	1.4895 (18)
013-030	1.3794 (16)	C32—H32a	0.9700
013-034	1 4256 (17)	C32—H32b	0.9700
014 - C25	1.3817(16)	C_{32} C_{33}	1 5031 (18)
014 - C34	1 4356 (18)	C33—H33a	0.9700
C15—H15a	0.9700	C33—H33b	0.9700
C15—H15b	0.9700	C34—H34a	0.9700
C15 C23	1.5182(17)	C_{34} H34b	0.9700
C17 H17	0.0300	034-11340	0.9700
	0.9500		
С22_03_H3	103.9 (10)	С15—С23—Н23а	109.4
$C_{22} = 05 = 115$	105.9(10) 110.56(0)	$C_{15} = C_{23} = H_{23h}$	109.4
$C_{13} = N_{3} = C_{20}$	110.30(9) 108.42(0)	$H_{22} = C_{23} = H_{23} = H_{23}$	109.4
$C_{29} = N_{5} = C_{15}$	106.42(9)	H25a - C25 - H250	108.0 122.20(12)
$C_{29} = N_{3} = C_{20}$	110.01(10) 110.05(10)	$N_{0} = C_{24} = C_{10}$	123.29 (12)
C/-NO-C31	119.05 (10)	$N_0 = C_2 4 = H_2 4$	118.4
C_24 NG C_1	120.11 (11)	C10—C24—H24	118.4
$C_{24} = N_{6} = C_{31}$	120.80 (10)	C19 - C25 - C14	128.82 (12)
N6-C/-C8	118.99 (11)	C19 - C25 - C30	121.38 (12)
C9—C7—N6	120.33 (11)	C30—C25—O14	109.78 (11)
C9—C7—C8	120.67 (11)	N5—C26—H26a	109.3
C7—C8—C16	121.34 (11)	N5—C26—H26b	109.3
C7—C8—C17	118.00 (11)	N5—C26—C27	111.40 (10)
C17—C8—C16	120.65 (11)	H26a—C26—H26b	108.0
С7—С9—Н9	119.2	С27—С26—Н26а	109.3
C12—C9—C7	121.58 (11)	С27—С26—Н26b	109.3
С12—С9—Н9	119.2	C20—C27—C26	118.66 (11)
C16—C10—C22	121.43 (11)	C21—C27—C20	119.83 (12)
C24—C10—C16	120.38 (11)	C21—C27—C26	121.52 (12)
C24—C10—C22	118.19 (12)	N11—C28—H28a	109.7
C12—N11—C23	116.32 (10)	N11—C28—H28b	109.7
C12—N11—C28	116.83 (9)	N11—C28—C29	109.89 (9)
C23—N11—C28	110.59 (9)	H28a—C28—H28b	108.2
C9—C12—C18	115.93 (11)	C29—C28—H28a	109.7
N11—C12—C9	123.34 (11)	C29—C28—H28b	109.7
N11—C12—C18	120.68 (11)	N5-C29-C28	110.38 (10)
C30—O13—C34	105.55 (10)	N5—C29—H29a	109.6
C25—O14—C34	105.13 (10)	N5—C29—H29b	109.6
N5—C15—H15a	109.3	С28—С29—Н29а	109.6
N5—C15—H15b	109.3	С28—С29—Н29Ь	109.6
N5—C15—C23	111.63 (10)	H29a—C29—H29b	108.1
H15a—C15—H15b	108.0	O13—C30—C25	109.77 (11)
C23—C15—H15a	109.3	C20—C30—O13	127.45 (12)
C23—C15—H15b	109.3	C20—C30—C25	122.75 (12)

00 01(00	101 00 (11)		115 7
O2—C16—C8	121.28 (11)	N6-C31-H31	115.7
O2—C16—C10	122.92 (11)	N6-C31-C32	118.35 (10)
C10-C16-C8	115.81 (11)	N6-C31-C33	119.73 (11)
C8—C17—H17	119.9	C32—C31—H31	115.7
C18 - C17 - C8	120.14(11)	C33_C31_H31	115 7
$C_{10} = C_{17} = C_{10}$	110.0		(0.24)(0)
	119.9	$C_{33} = C_{31} = C_{32}$	00.34 (9)
F1-C18-C12	118.11 (10)	C31—C32—H32a	117.8
C17—C18—F1	118.36 (11)	C31—C32—H32b	117.8
C17—C18—C12	123.49 (11)	C31—C32—C33	59.44 (8)
С21—С19—Н19	121.7	H32a—C32—H32b	115.0
C25—C19—H19	1217	C33—C32—H32a	117.8
C_{25} C_{19} C_{21}	116.60(12)	C_{33} C_{32} H_{32b}	117.8
$C_{23} = C_{13} = C_{21}$	110.00 (12)	$C_{33} = C_{32} = C_{32}$	(0, 22, (0))
C27—C20—H20	121.5	C31—C33—C32	60.22 (9)
C30—C20—H20	121.5	С31—С33—Н33а	117.7
C30—C20—C27	117.07 (12)	С31—С33—Н33b	117.7
C19—C21—H21	118.8	С32—С33—Н33а	117.7
C27—C21—C19	122.37 (12)	С32—С33—Н33b	117.7
C27—C21—H21	118.8	H33a—C33—H33b	114.9
O_2^2 C_2^2 C_1^0	114.60 (11)	013 024 014	108.06 (10)
	114.09(11)	013 - 034 - 014	108.00 (10)
04-022-03	121.37 (12)	013—C34—H34a	110.1
O4—C22—C10	123.93 (12)	O13—C34—H34b	110.1
N11—C23—C15	111.08 (10)	O14—C34—H34a	110.1
N11—C23—H23a	109.4	O14—C34—H34b	110.1
N11—C23—H23b	109.4	H34a—C34—H34b	108.4
N5 C15 C22 N11	<i>55</i> 90 (14)	C10 C25 C20 O12	170 54 (11)
N5-C15-C23-N11	-55.89 (14)	013	1/8.54 (11)
N5—C26—C27—C20	-57.52 (15)	C19—C25—C30—C20	0.5 (2)
N5—C26—C27—C21	122.24 (12)	C21—C19—C25—O14	177.31 (12)
N6—C7—C8—C16	-2.09 (17)	C21—C19—C25—C30	-0.51 (19)
N6—C7—C8—C17	177.82 (10)	C22—C10—C16—O2	0.78 (18)
N6-C7-C9-C12	-179.86(10)	C22—C10—C16—C8	-17911(10)
N6 C31 C32 C33	-100.05(13)	$C_{22} C_{10} C_{24} N_6$	177.03(11)
NG-C31-C32-C33	109.95(13)	$C_{22} = C_{10} = C_{24} = 100$	2.95(10)
NO-C3I-C33-C32	107.70 (13)	C23—N11—C12—C9	-3.85 (10)
C/—N6—C24—C10	2.42 (18)	C23—N11—C12—C18	173.30 (10)
C7—N6—C31—C32	-75.97 (14)	C23—N11—C28—C29	-56.22 (13)
C7—N6—C31—C33	-146.14 (11)	C24—N6—C7—C8	0.10 (17)
C7—C8—C16—O2	-178.28(10)	C24—N6—C7—C9	-178.88(11)
C7—C8—C16—C10	1.61 (17)	C24—N6—C31—C32	106.58 (13)
C7 - C8 - C17 - C18	1.01(17) 1.25(17)	C_{24} N6 C_{31} C_{33}	36.42(17)
C7 = C0 = C12 = N11	1.23(17)	C_{24} C_{10} C_{16} O_{2}	170.21(11)
C/C9C12N11	1/9.95 (11)		-1/9.31 (11)
C/C9C12C18	2.66 (17)	C24—C10—C16—C8	0.80 (17)
C8—C7—C9—C12	1.18 (18)	C24—C10—C22—O3	-179.72 (11)
C8—C17—C18—F1	-174.85 (10)	C24—C10—C22—O4	-0.3 (2)
C8—C17—C18—C12	2.83 (19)	C25—O14—C34—O13	12.86 (14)
C9—C7—C8—C16	176.89 (10)	C25—C19—C21—C27	0.29 (18)
C9-C7-C8-C17	-321(17)	$C_{26} N_{5} C_{15} C_{23}$	-179 89 (10)
C_{0} C_{12} C_{18} E_{1}	172.04(10)	$C_{26} = N_5 = C_{20} = C_{20}^{20}$	177 45 (10)
C7-C12-C10-F1	1/2.94 (10)	120 103 23 23 23	177.45 (10)
	175 (10)		1 7 7 0 7 7 7 7

N11—C12—C18—F1 N11—C12—C18—C17 N11—C28—C29—N5 C12—N11—C23—C15 C12—N11—C28—C29 O14—C25—C30—O13 O14—C25—C30—C20 C15—N5—C26—C27 C15—N5—C29—C28 C16—C8—C17—C18 C16—C10—C22—O3 C16—C10—C22—O4 C16—C10—C22—O4 C16—C10—C24—N6 C17—C8—C16—O2	$\begin{array}{c} -4.41 \ (17) \\ 177.90 \ (11) \\ 60.54 \ (13) \\ -169.84 \ (10) \\ 167.66 \ (10) \\ 0.34 \ (14) \\ -177.73 \ (11) \\ 174.00 \ (10) \\ -61.18 \ (12) \\ -178.84 \ (11) \\ 0.20 \ (17) \\ 179.57 \ (12) \\ -2.89 \ (19) \\ 1.81 \ (18) \\ 179.00 \ (11) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.16 (18) \\ 129.76 (12) \\ -53.09 (15) \\ 53.80 (13) \\ 58.71 (13) \\ -65.90 (13) \\ -12.70 (14) \\ -0.06 (17) \\ 179.70 (11) \\ -177.36 (10) \\ 3.66 (16) \\ 179.84 (11) \\ -174.34 (13) \\ 7.71 (14) \\ 172.0 (12) \end{array}$
C16—C10—C24—N6 C17—C8—C16—O2 C17—C8—C16—C10 C19—C21—C27—C20 C19—C21—C27—C26	-2.89 (19) 1.81 (18) -178.30 (11) -0.01 (18) -179.77 (11)	C34—O13—C30—C20 C34—O13—C30—C25 C34—O14—C25—C19 C34—O14—C25—C30	-1/4.34 (13) 7.71 (14) 173.81 (13) -8.17 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
O3—H3…O2	0.992 (19)	1.563 (19)	2.5215 (13)	161.1 (17)
C20—H20…O13 ⁱ	0.93	2.58	3.3206 (17)	137
C28—H28a…F1	0.97	2.18	2.8587 (15)	126
C32—H32 <i>b</i> ····O2 ⁱⁱ	0.97	2.49	3.4144 (16)	158
C34—H34 <i>b</i> ····O3 ⁱⁱⁱ	0.97	2.44	3.3853 (18)	165

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*; (iii) *x*-1, *y*+1, *z*+1.